Estimation of Probabilistic Characteristics of Reception of Frequency-Effective Signals during Propagation along a Radio Line with Fog

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A model of a radio line with fog, which is used to represent distortions of complex envelopes of digital signals because of the absorbing and dispersive properties of the propagation medium, has been considered. It is shown that with an increase in the frequency band of digital signals and with an increase in their  order of manipulation (when using frequency-efficient signals), the influence of these distortions leads to energy losses in relation to propagation in free space. The quantitative estimation of energy losses for the digital signals used in applications with multi-position phase, quadrature-amplitude, and amplitude-phase manipulations and for a radio line with fog with a variation of its parameters has been carried out. It has been shown that for signals with multiposition phase and amplitude-phase manipulations (the frequency efficiency coefficient of the signals is 4 bits/s/Hz), the energy losses reach 3.5 and 1.0 dB, respectively.

Sobre autores

L. Nazarov

Kotelnikov Institute of Radioengineering and Electronics, Fryazino Branch, Russian Academy of Science; Reshetnev JSC Information Satellite Systems

Email: levnaz2018@mail.ru
Fryazino, Moscow oblast, 141190 Russia; Zheleznogorsk, Krasnoyarsk krai, 662972 Russia

B. Kutuza

Kotelnikov Institute of Radioengineering and Electronics (IRE), Russian Academy of Science

Email: levnaz2018@mail.ru
Moscow, 125009 Russia

V. Batanov

Reshetnev JSC Information Satellite Systems

Autor responsável pela correspondência
Email: levnaz2018@mail.ru
Zheleznogorsk, Krasnoyarsk krai, 662972 Russia;

Bibliografia

  1. Лукин Д.С., Палкин Е.А. Численный канонический метод в задачах дифракции и распространения электромагнитных волн в неоднородных средах. М.: МФТИ, 1982.
  2. Крюковский А.С., Лукин Д.С., Растягаев Д.В. и др. // РЭ. 2015. Т. 60. № 10. С. 1001.
  3. Richharia M., Westbrook L.D. Satellite Systems for Personal Applications. Concepts and Technology. Chichester: John Wiley and Sons, Ltd., Publ., 2010.
  4. ГЛОНАСС: принципы построения и функционирования. / Под ред. А.И. Перова, В.Н. Харисова. М.: Радиотехника, 2010.
  5. Спилкер Дж. Цифровая спутниковая связь. М.: Связь, 1979.
  6. Верба В.С., Неронский Л.Б., Осипов И.Г., Турук В.Э. Радиолокационные системы Землеобзора космического базирования. М.: Радиотехника, 2010.
  7. Second generation framing structure, channel coding and modulation systems for Broadcasting, Interactive Services, News Gathering and other broadband satellite applications Pt 2: DVB-S2 Extensions (DVB-S2X) DVB. Doc. A083-2. Eur. Broadcasting Union CH-1218. Geneva, 2020. https://dvb.org/wp-content/uploads/ 2019/10/A083-2_DVB-S2X_Draft-EN-302-307-2-v121_ Feb_2020.pdf.
  8. Колосов М.А., Арманд Н.А., Яковлев О.И. Распространение радиоволн при космической связи. М.: Связь, 1969.
  9. Recommendation ITU-R P.838-3. Specific attenuation model for rain for use in prediction methods. Geneva, 2005. https://www.itu.int/dms_pubrec/itu-r/rec/ p/R-REC-P.838-3-200503-I!!PDF-E.pdf.
  10. Назаров Л.Е., Кутуза Б.Г. // Сб. трудов XV Всерос. науч.-техн. конф. “Радиолокация и радиосвязь”. Москва. 21–23 нояб., 2022. М.: ИРЭ им. В.А. Котельникова РАН, 2022. С. 293.
  11. Recommendation ITU-R P.840-4. Attenuation due to clouds and fog. P Series “Radiowave propagation”. Geneva: Electronic Publ., 2009. https://www.itu.int/dms_pubrec/ itu-r/rec/p/R-REC-P.840-7-201712-S!!PDF-E.pdf.
  12. Kyтyзa Б.Г. // PЭ. 1974. T. 19. № 4. C. 665.
  13. Гинзбург В.Л. Распространение электромагнитных волн в плазме. М.: Наука, 1960.
  14. Яковлев О.И., Якубов В.П., Урядов В.П. др. Распространение радиоволн. М.: Ленанд, 2009.
  15. Никольский В.В. Электродинамика и распространение радиоволн. М.: Наука, 1973.
  16. Скляр Б. Цифровая связь. Теоретические основы и практическое применение. М.: ИД “Вильямс”, 2003.
  17. Назаров Л.Е., Батанов В.В. // РЭ. 2017. Т. 62. № 9. С. 866.
  18. Proakis J.G., Salehi M. Digital Communication. Boston: McGraw-Hill, Higher Education, 2001.
  19. ATIS 3GPP Specification, 3GPP TS 38.211 V16.2.0 (2020-06): 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical channels and modulation (Release 16). Washington: Publ. Alliance for Telecom. Industry Solutions, 2020.
  20. Назаров Л.Е., Батанов В.В. // РЭ. 2022. Т. 67 № 8. С. 782. https://doi.org/10.31857/S0033849422080137
  21. Пoжидaeв B.H. // PЭ. 2010. T. 55. № 11. C. 1311.
  22. ван де Хюлст Г. Рассеяние света малыми частицами. М.: Изд-во иностр. лит., 1961.
  23. Боровков А.А. Математическая статистика. Оценка параметров. Проверка гипотез. М.: Наука, 1984.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (201KB)
3.

Baixar (189KB)

Declaração de direitos autorais © Л.Е. Назаров, Б.Г. Кутуза, В.В. Батанов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies