Magnetocaloric Effect in a Ni2.25Mn0.75Ga0.93Si0.07 Alloy

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of a study of the magnetocaloric effect (MCE) in Ni2.25Mn0.75Ga0.93Si0.07 alloy are presented in the cast state and in the state after multi-axial isothermal forging (MIF) at 700°C and true degree of deformation e = 3.19. It is shown that as a result of MIF, the initial equiaxed microstructure is transformed into a bimodal one in which large grains 100–200 μm in size are surrounded by a layer of fine-grained microstructure.
As a result of MIF, the range of martensitic transformation is slightly shifted to the region of low temperatures by about 5°C. The analysis of phase transformations in the region of room temperatures shows that the intervals of martensitic and magnetic phase transformations are superimposed on each other. The MCE value in a magnetic field of 1.8 T is 0.59ºC in the initial cast state, and as a result of forging it decreases to 0.55°C.

About the authors

R. Yu. Gaifullin

Institute for Metals Superplasticity Problems, Russian Academy of Sciences

Email: irekmusabirov@mail.ru
Ufa, 450001 Russia

A. B. Gadzhiev

Institute of Physics, Russian Academy of Sciences

Email: irekmusabirov@mail.ru
Makhachkala, 367003 Russia

A. M. Aliev

Institute of Physics, Russian Academy of Sciences

Email: irekmusabirov@mail.ru
Makhachkala, 367003 Russia

S. V. Taskaev

Chelyabinsk State University

Email: irekmusabirov@mail.ru
Chelyabinsk, 454001 Russia

I, I. Musabirov

Institute for Metals Superplasticity Problems, Russian Academy of Sciences

Author for correspondence.
Email: irekmusabirov@mail.ru
Ufa, 450001 Russia

References

  1. Cherechukin A.A., Dikshtein I.E., Ermakov D.I. et al. // Phys. Lett. A. 2001. V. 291. № 2–3. P. 175. https://doi.org/10.1016/S0375-9601(01)00688-0
  2. Kamantsev A., Mashirov A., Dilmieva E. et al. // Phys. Procedia. 2016. V. 82. P. 15. https://doi.org/10.1016/j.phpro.2016.05.004
  3. Zhou Z., Wu P., Ma G. et al. // J. Alloys Compounds. 2019. V. 792. P. 399. https://doi.org/10.1016/j.jallcom.2019.04.038
  4. Mendonca A.A., Jurado J.F., Stuard S.J. et al. // J. Alloys Compounds. 2018. V. 738. P. 509. https://doi.org/10.1016/j.jallcom.2017.12.197
  5. Gaitzsch U., Potschke M., Roth S. et al. // Acta Materialia. 2009. V. 57. № 2. P. 365. https://doi.org/10.1016/j.actamat.2008.09.017
  6. Родионов И.Д., Кошкидько Ю.С., Цвик Я. и др. // Письма в ЖЭТФ. 2015. Т. 101. № 4. С. 419. https://doi.org/10.7868/S0370274X15060053
  7. Kamantsev A.P., Koledov V.V., Mashirov A.V. et al. // J. Appl. Phys. 2015. V. 117. № 16. P. 163903. https://doi.org/10.1063/1.4918914
  8. Алиев А.М., Батдалов А.Б., Ханов Л.Н. и др. // ФТТ. 2020. Т. 62. № 5. С. 748.
  9. Yang J., Li Z., Yang B. et al. // J. Alloys Compounds. 2022. V. 892. Article No. 162190. https://doi.org/10.1016/j.jallcom.2021.162190
  10. Zhang L., Zhang J., Li K. et al. // Acta Materialia. 2022. V. 239. Article No.118245. https://doi.org/10.1016/j.actamat.2022.118245
  11. Mendonca A.A., Ghivelder L., Jurado J.F., Gomes A.M. // J. Magn. Magn. Mater. 2021. V. 531. Article No. 167965. https://doi.org/10.1016/j.jmmm.2021.167965
  12. Wei L., Zhang X., Gan W. et al. // J. Alloys Compounds. 2021. V. 874. Article No. 159755. https://doi.org/10.1016/j.jallcom.2021.159755
  13. Chen J., Lei L., Fang G. // Materials Today Commun. 2021. V. 28. Article No. 102706. https://doi.org/10.1016/j.mtcomm.2021.102706
  14. Feng Y., Gao J., Zhou M., Wang H. // J. Magn. Magn. Mater. 2022. V. 563. P. 169906. https://doi.org/10.1016/j.jmmm.2022.169906
  15. Gui W., Qu Y., Cao Y. et al. // J. Mater. Research and Technol. 2022. V. 19. P. 4998. https://doi.org/10.1016/j.jmrt.2022.07.018
  16. Zhu Y., Xuan H., Su J. et al. // Phys. Lett. A. 2022. V. 451. Article No. 128374. https://doi.org/10.1016/j.physleta.2022.128374
  17. Koshkidko Yu.S., Dilmieva E.T., Cwik J. et al. // J. Alloys Compounds. 2019. V. 798. P. 810. https://doi.org/10.1016/j.jallcom.2019.05.246
  18. Алъбертини Ф., Бессегини С., Бугаев А.С. и др. // РЭ. 2006. Т. 50. № 6. С. 697.
  19. Имашев Р.Н., Мулюков Х.Я., Коледов В.В., Шавров В.Г. // ДАН. 2005. Т. 400. № 3. С. 333.
  20. Morawiec H., Goryczka T., Drdzen A. et al. // Solid State Phenomena. 2009. V. 154. P. 133. https://doi.org/10.4028/www.scientific.net/ssp.154.133
  21. Калетина Ю.В., Грешнова Е.Д., Калетин А.Ю. и др. // ФММ. 2019. Т. 120. № 2. С. 183. https://doi.org/10.1134/S0015323019020074
  22. Пушин В.Г., Куранова Н.Н., Марченкова Е.Б., Пушин А.В. // ФММ. 2020. Т. 121. № 4. С. 374. https://doi.org/10.31857/S0015323020040129
  23. Пушин В.Г., Куранова Н.Н., Марченкова Е.Б., Пушин А.В. // ЖТФ. 2020. Т. 90. № 4. С. 627. https://doi.org/10.21883/JTF.2020.04.49088.318-19
  24. Wei L.S., Zhang X.X., Qian M.F. et al. // Materials and Design. 2018. V. 142. P. 329. https://doi.org/10.1016/j.matdes.2018.01.048
  25. Wei L., Zhang X., Qian M. et al. // Materials and Design. 2016. V. 112. P. 339. https://doi.org/10.1016/j.matdes.2016.09.076
  26. Chulist R., Skrotzki W., Oertel C.-G. et al. // Intern. J. Mater. Research. 2012. V. 103. I. 5. P. 575. https://doi.org/10.3139/146.110735
  27. Wei L., Zhang X., Gan W. et al. // Scripta Materialia. 2019. V. 168. P. 28. https://doi.org/10.1016/j.scriptamat.2019.04.009
  28. Musabirov I.I., Safarov I.M., Galeyev R.M. et al. // IOP Conf. Ser.: Materials Science and Engineering. 2018. V. 447. P. 012024. https://doi.org/10.1088/1757-899X/447/1/012024
  29. Musabirov I.I., Safarov I.M., Galeyev R.M. et al. // Mater. Phys. Mechanics. 2018. V. 40. I. 2. P. 201. https://doi.org/10.18720/MPM.4022018_8
  30. Musabirov I.I., Galeyev R.M., Safarov I.M. // J. Magn. Magn. Mater. 2020. V. 514. P. 167160. https://doi.org/10.1016/j.jmmm.2020.167160
  31. Мусабиров И.И., Сафаров И.М., Галеев Р.М. и др. // ФТТ. 2018. Т. 60. № 6. С. 1051.
  32. Musabirov I.I., Safarov I.M., Galeyev R.M. et al. // Trans. Indian Inst. Met. 2021. V. 74. P. 2481. https://doi.org/10.1007/s12666-021-02349-9
  33. Алиев А.М., Батдалов А.В., Калитка В.С. // Письма в ЖЭТФ. 2009. Т. 90. № 10. С. 736.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (172KB)
3.

Download (1MB)
4.

Download (119KB)
5.

Download (83KB)
6.

Download (124KB)

Copyright (c) 2023 Р.Ю. Гайфуллин, А.Б. Гаджиев, А.М. Алиев, С.В. Таскаев, И.И. Мусабиров

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».