Magnetocaloric Materials for Low-Temperature Magnetic Cooling

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

State of research in the study of magnetocaloric materials based on rare-earth metals that are promising for application in the technology of low-temperature magnetic cooling is reviewed. Physical principles and characteristics of the magnetocaloric effect in materials based on rare-earth metals with low-temperature magnetic phase transitions are presented.

Sobre autores

Yu. Koshkid’ko

Institute of Low Temperature and Structure Research, Polish Academy of Science; Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Wroclaw, 50-422 Poland; Moscow, 125009 Russia

E. Dilmieva

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia;

A. Kamantsev

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia;

A. Mashirov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia

J. Cwik

Institute of Low Temperature and Structure Research, Polish Academy of Science

Email: y.koshkidko@intibs.pl
Wroclaw, 50-422 Poland

N. Kol’chugina

Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 119334 Russia

V. Koledov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia

V. Shavrov

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: y.koshkidko@intibs.pl
Moscow, 125009 Russia

Bibliografia

  1. Giauque W.F. // J. Amer. Chem. Soc. 1927. V. 49. № 8. P. 1864. https://doi.org/10.1021/ja01407a003
  2. Белов К.П. Магнитотепловые явления в редкоземельных магнетиках. М.: Наука, 1990.
  3. Никитин С.А. Магнитные свойства редкоземельных металлов и их сплавов. М.: Изд-во МГУ, 1989.
  4. Tishin A.M., Spichkin Y.I. The Magnetocaloric Effect and its Applications. Bristol: IOP Publishing, 2003.
  5. Андреенко А.С., Белов К.П., Никитин С.А., Тишин А.М. // Успехи физ. наук. 1989. Т. 158. № 4. С. 553.
  6. Gschneidner Jr. K.A., Pecharsky V.K., Tsokol A.O. // Reports on Progress in Physics. 2005. V. 68. № 6. P. 1479.https://doi.org/10.1088/0034-4885/68/6/R04
  7. Khovaylo V., Taskaev S. // Encyclopedia of Smart Materials. 2022. V. 5. P. 407. https://doi.org/10.1016/B978-0-12-815732-9.00132-7
  8. Kitanovski A. // Adv. Energy Mater. 2020. V. 10. № 10. Article No.1903741. https://doi.org/10.1002/aenm.201903741
  9. Lyubina J. // J. Phys. D: Appl. Phys. 2017. V. 50. № 5. Article No. 053002. https://doi.org/10.1088/1361-6463/50/5/053002
  10. Zhang H., Gimaev R., Kovalev B. et al. // Physica B: Cond. Matt. 2019. V. 558. P. 65. https://doi.org/10.1016/j.physb.2019.01.035
  11. Liu W., Bykov E., Taskaev S. et al. // Appl. Mater. Today. 2022. V. 29. № 10. P. 101624. https://doi.org/10.1016/j.apmt.2022.101624
  12. Park I., Jeong S. // Cryogenics. 2017. V. 88. P. 106. https://doi.org/10.1016/j.cryogenics.2017.09.008
  13. Numazawa T., Kamiya K., Utaki T., Matsumoto K. // Cryogenics. 2014. V. 62. P. 185. https://doi.org/10.1016/j.cryogenics.2014.03.016
  14. Zhang H., Sun Y.J., Niu E. et al. // Appl. Phys. Lett. 2013. V. 103. № 20. P. 202412. https://doi.org/10.1063/1.4832218
  15. Gallo C.F. // J. Appl. Phys. 1965. V. 36. № 11. P. 3410. https://doi.org/10.1063/1.1703007
  16. Фегер А., Янош С., Петрович П. и др. // ФНТ. 1978. Т.4. № 10. С. 1305.
  17. Ratnalingam R., Sousa J.B. // Phys. Lett. A. 1969. V. 30. № 1. P. 8. https://doi.org/10.1016/0375-9601(69)90007-3
  18. Timmerhaus K.D., Reed R.P. Cryogenic Engineering: Fifty Years of Progress. N. Y.: Springer Science & Business Media, 2007.
  19. Gimaev R.R., Komlev A.S., Davydov A.S. et al. // Crystals. 2021 V. 11. № 2. Article No. 82. https://doi.org/10.3390/cryst11020082
  20. Суслов Д.А., Шавров В.Г., Коледов В.В. и др.// Челябинский физико-математический журн. 2020. Т. 5. № 4. Ч. 2. С. 612. https://doi.org/10.47475/2500-0101-2020-15420
  21. Koshkid’ko Y., Pandey S., Quetz A. et al. // J. Alloys Compounds. 2017. V. 695. P. 3348. https://doi.org/10.1016/j.jallcom.2016.12.032
  22. Konoplyuk S.M., Mashirov A.V., Kamantsev A.P. et al. // IEEE Trans. 2018. V. MAG-54. № 1. Article No. 2500204. https://doi.org/10.1109/TMAG.2017.2761322
  23. Соколовский В.В., Начинова Д.В., Бучельников В.Д. и др. // Челябинский физико-математический журн. 2020. Т. 5. № 4. Ч. 1. С. 493.https://doi.org/10.47475/2500-0101-2020-15409
  24. Кошкидько Ю.С., Пастушенков Ю.Г., Семенова Е.М., Иванова Т.И. // Перспективные материалы. 2008. Т. S6-1. С. 81.
  25. Zheng X.Q., Xu Z.Y., Zhang B., Hu F.X., Shen B.G. // J. Magn. Magn. Mater. 2017. V. 421. P. 448. https://doi.org/10.1016/j.jmmm.2016.08.048
  26. Кошкидько Ю.С. Анизотропия магнитокалорического эффекта монокристаллов соединений 3d- и 4f-металлов в области магнитных фазовых переходов. Дис. … канд. физ.-мат. наук. Тверь: Твер. гос. ун-т, 2011. 162 с.
  27. Nikitin S.A., Skokov K.P., Koshkid’ko Yu.S. et al. // Phys. Rev. Lett. 2010. V. 105. № 13. P. 137205. https://doi.org/10.1103/PhysRevLett.105.137205
  28. Koshkid’ko Y.S. Skokov K.P., Pastushenkov Yu.G. et al. // Solid State Phenomena. 2011. V. 168–169. P. 134. https://doi.org/10.4028/www.scientific.net/SSP.168-169.134
  29. Skokov K.P. Pastushenkov Y.G., Koshkid’ko Y.S. et al. // J. Magn. Magn. Mater. 2011. V. 323. P. 447. https://doi.org/10.1016/j.jmmm.2010.09.044
  30. Nikitin S.A., Ivanova T.I., Zvonov A.I. et al. // Acta Mater. 2018. V. 161. P. 331. https://doi.org/10.1016/j.actamat.2018.09.017
  31. Wang K., Zhang M., Liu J. et al. // J. Appl. Phys. 2019. V. 125. № 24. P. 243901. https://doi.org/10.1063/1.5093708
  32. Никитин С.А., Андреенко А.С., Тишин А.М. и др. // ФММ. 1985. Т. 60. № 4. С. 689.
  33. Никитин С.А. Андреенко А.С., Тишин А.М. и др. // ФММ. 1985. Т. 59. № 1. С. 327.
  34. Тейлор К., Дарби М. Физика редкоземельных соединений. М.: Мир, 1974.
  35. Zimm C.B., Barclay J.A., Harkness H.H. et al. // Cryogenics. 1989. V. 29. № 9. P. 937. https://doi.org/10.1016/0011-2275(89)90210-5
  36. Zimm C.B., Ratzmann P.M., Barclay J.A. et al. // Adv. Cryogenic Eng. Mater. 1990. V. 36. Pts. A, B. P. 763. https://doi.org/10.1007/978-1-4613-9880-6_99
  37. Koshkid’ko Y.S., Ćwik J., Ivanova T.I. et al. // J. Magn. Magn. Mater. 2017. V. 433. P. 234. https://doi.org/10.1016/j.jmmm.2017.03.027
  38. Koshkid’ko Yu.S., Dilmieva E.T., Kamantsev A.P. et al. // J. Alloys Compounds. 2022. V. 905. Article No. 164051. https://doi.org/10.1016/j.jallcom.2022.164051
  39. Koshkid'ko Y.S, Dilmieva E.T., Ćwik J. et al. // J. Alloys Compounds. 2019. V. 798. P. 810. https://doi.org/10.1016/j.jallcom.2019.05.246
  40. Белов К.П., Эффекты парапроцесса в ферримагнетиках и антиферромагнетиках. М.: Физматлит, 2001.
  41. Dan’kov S.Yu., Tishin A.M., Pecharsky V.K., Gschneidner Jr. K.A. // Phys. Rev. B. 1998. V. 57. № 6. P. 3478. https://doi.org/10.1103/PhysRevB.57.3478
  42. Pecharsky V.K., Gschneidner K.A., Jr. // J. Appl. Phys. 1999. V. 86. № 1. P. 565. https://doi.org/10.1063/1.370767
  43. Kamantsev A.P., Koledov V.V., Mashirov A.V. et al. // Solid State Phenom. 2015. V. 233–234. P. 216. https://doi.org/10.4028/www.scientific.net/SSP.233-234.216
  44. Aliev A.M., Batdalov A.B., Khanov L.N. et al. // Appl. Phys. Lett. 2016. V. 109. № 20. P. 202407. https://doi.org/10.1063/1.4968241
  45. Gopal B.R., Chahine R., Bose T.K. // Rev. Sci. Instrum. 1997. V. 68. № 4. P. 1818. https://doi.org/10.1063/1.1147999
  46. Liu J.Y., Zheng Z.G., Lei L. et al. // Rev. Sci. Instrum. 2020. V. 91. № 6. P. 065102. https://doi.org/10.1063/1.5128949
  47. Zavareh M.G., Skourski Y., Skokov K.P. et al. // Phys. Rev. Appl. 2017. V. 8. № 1. P. 014037. https://doi.org/10.1103/PhysRevApplied.8.014037
  48. Kihara T., Xu X., Ito W. et al. // Phys. Rev. B. 2014. V. 90. № 21. P. 214409. https://doi.org/10.1103/PhysRevB.90.214409
  49. Cugini F., Orsi D., Brück E., Solzi M. // Appl. Phys. Lett. 2018. V. 113. № 23. P. 232405. https://doi.org/10.1063/1.5061929
  50. Gottschall T., Kuz’min M.D., Skokov K.P. et al. // Phys. Rev. B. 2019. V. 99. № 13. P. 134429. https://doi.org/10.1103/PhysRevB.99.134429
  51. Kamantsev A.P., Koledov V.V., Mashirov A.V. et al. // J. Magn. Magn. Mater. 2017. V. 440. P. 70. https://doi.org/10.1016/j.jmmm.2016.12.063
  52. Khmelevskyi S., Mohn P. // J. Phys.: Cond. Matt. 2000. V. 12. № 45. P. 9453. https://doi.org/10.1088/0953-8984/12/45/308
  53. Nikitin S.A., Tishin A.M. // Cryogenics. 1991. V. 31. № 3. P. 166. https://doi.org/10.1016/0011-2275(91)90171-R
  54. Ćwik J., Koshkid’ko Y., de Oliveira N.A. et al. // Acta Mater. 2017. V. 133. P. 230. https://doi.org/10.1016/j.actamat.2017.05.054
  55. von Ranke P.J., de Oliveira N.A., Tovar Costa M.V. et al. // J. Magn. Magn. Mater. 2001. V. 226. P. 970. https://doi.org/10.1016/S0304-8853(00)01162-8
  56. Dan’kov Yu.S., Ivtchenko V.V., Tishin A.M. et al. // Adv. Cryogenic Eng. Mater. 2000. V. 46. P. 397. https://doi.org/10.1007/978-1-4615-4293-3_51
  57. Matsumoto K., Asamato K., Nishimura Y. et al. // J. Phys.: Conf. Ser. 2012. V. 400. № 5. P. 052020. https://doi.org/10.1088/1742-6596/400/5/052020
  58. Patra M., Majumdar S., Giri S. et al. // J. Phys.: Cond. Matt. 2014. V. 26. № 4. P. 046004. https://doi.org/10.1088/0953-8984/26/4/046004
  59. von Ranke P.J., Pecharsky V.K., Gschneidner K.A., Jr. // Phys. Rev. B. 1998. V. 58. № 18. P. 12110. https://doi.org/10.1103/PhysRevB.58.12110
  60. Zuo W., Hu F., Sun J., Shen B. // J. Alloys Compounds. 2013. V. 575. P. 162. https://doi.org/10.1016/j.jallcom.2013.03.185
  61. Ćwik J., Koshkid’ko Y., Nenkov K. et al. // J. Alloys Compounds. 2018. V. 735. P. 1088. https://doi.org/10.1016/j.jallcom.2017.11.194
  62. Tomokiyo A., Yayama H., Wakabayashi H. et al. // Adv. Cryogenic Eng. Mater. 1986. V. 32. P. 295.
  63. Zheng X.Q., Xu Z.Y., Zhang B. et al. // J. Magn. Magn. Mater. 2017. V. 421. P. 448. https://doi.org/10.1016/j.jmmm.2016.08.048
  64. Ivanova T.I., Nikitin S.A., Tskhadadze G.A. et al. // J. Alloys Compounds. 2014. V. 592. P. 271. https://doi.org/10.1016/j.jallcom.2013.12.171
  65. Tishin M.A. // Handbook on Magnetic Materials. 1999. V. 12. P. 395. https://doi.org/10.1016/S1567-2719(99)12008-0
  66. Duc N.H., Kim Anh D.T. // J. Magn. Magn. Mater. 2002. V. 242. P. 873. https://doi.org/10.1016/S0304-8853(01)01328-2
  67. Sánchez Llamazares J.L., Ibarra-Gaytán P., Sánchez-Valdés C.F. et al. // J. Rare Earths. 2020. V. 38. № 6. P. 612. https://doi.org/10.1016/j.jre.2019.07.011
  68. Oesterreicher H., Parker F.T. // J. Appl. Phys. 1984. V. 55. № 12. P. 4334. https://doi.org/10.1063/1.333046
  69. Belo J.H., Amaral J.S., Pereira A.M. et al. // Appl. Phys. Lett. 2012. V. 100. № 24. P. 242407. https://doi.org/10.1063/1.4726110
  70. Taskaev S., Khovaylo V., Skokov K. et al. // J. Appl. Phys. 2020. V. 127. № 23. P. 233906. https://doi.org/10.1063/5.0006281
  71. Wada H., Tanabe Y., Shiga M. et al. // J. Alloys. Compounds. 2001. V. 316. P. 245. https://doi.org/10.1016/S0925-8388(00)01305-0
  72. Gschneidner K.A., Pecharsky V.K., Malik S.K. // Adv. Cryogenics Eng. Mater. 1996. V. 42. P. 475. https://doi.org/10.1007/978-1-4757-9059-7_63
  73. Cwik J., Koshkid’ko Y., Nenkov K. et al. // Phys. Rev. B. 2021. V. 103. № 21. P. 214429. https://doi.org/10.1103/PhysRevB.103.214429
  74. Bykov E., Liu W., Skokov K., Scheibel F. et al. // Phys. Rev. Mater. 2021. V. 5. № 9. P. 095405. https://doi.org/10.1103/PhysRevMaterials.5.095405
  75. Ćwik J., Koshkid’ko Y., Nenkov K. et al. // J. Alloys. Compounds. 2021. V. 859. Article No. 157870. https://doi.org/10.1016/j.jallcom.2020.157870
  76. Alho B.P., Lopes P.H.O., Ribeiro P.O. et al. // J. Magn. Magn. Mater. 2018. V. 449. P. 308. https://doi.org/10.1016/j.jmmm.2017.10.044
  77. de Oliveira N.A., von Ranke P.J. // Solid State Commun. 2007. V. 144. P. 103. https://doi.org/10.1016/j.ssc.2007.08.018
  78. Ćwik J., Koshkid’ko Y., Nenkov K. et al. // Sci. Reports. 2022. V. 12. P. 12332. https://doi.org/10.1038/s41598-022-16738-7
  79. Ćwik J., Koshkid’ko Y., Nenkov K. et al. // Crystals. 2022. V. 12. № 7. Article No. 931. https://doi.org/10.3390/cryst12070931
  80. Ribeiro P.O., Alho B.P., Alvarenga T.S.T. et al. // J. Magn. Magn. Mater. 2015. V. 379. P. 112. https://doi.org/10.1016/j.jmmm.2014.12.023
  81. Ribeiro P.O., Alho B.P., Alvarenga T.S.T. et al. // J. Alloys. Compounds. 2013. V. 563. P. 242. https://doi.org/10.1016/j.jallcom.2013.02.068
  82. Ćwik J., Koshkid’ko Y., Małecka M., et al. // J. Alloys. Compounds. 2021. V. 886. Article No. 161295. https://doi.org/10.1016/j.jallcom.2021.161295
  83. Sánchez Llamazares J.L., Zamora J., Sánchez-Valdés C.F., Álvarez-Alonso P. // J. Alloys. Compounds. 2020. V. 831. Article No. 154779. https://doi.org/10.1016/j.jallcom.2020.154779
  84. Hashinomoto T., Kuzuhara T., Matsumoto K. et al. // IEEE Trans. 1987. V. MAG-23. № 5. P. 2847. https://doi.org/10.1109/TMAG.1987.1065717
  85. Sánchez Llamazares J.L., Ibarra-Gaytán P., Sánchez-Valdés C.F. et al. // Intermetallics. 2017. V. 88. P. 41. https://doi.org/10.1016/j.intermet.2017.05.001
  86. Marcos J.S., Rodriguez Fernandez J., Chevalier B. et al. // J. Magn. Magn. Mater. 2004. V. 272. P. 579. https://doi.org/10.1016/j.jmmm.2003.11.225
  87. Rajivgandhi R., Arout Chelvane J., Nirmala R. // AIP Conf. Proc. 2017. V. 1832. № 13. P. 130059. https://doi.org/10.1063/1.4980779
  88. Karmakar S.K., Giri S., Majumdar S. // J. Appl. Phys. 2015. V. 117. № 19. P. 193904. https://doi.org/10.1063/1.4921360
  89. Arora P., Tiwari P., Sathe V.G., Chattopadhyay M.K. // J. Magn. Magn. Mater. 2009. V. 321. P. 3278. https://doi.org/10.1016/j.jmmm.2009.05.062
  90. Cwik J., Koshkid’ko Y., Kolchugina N. et al. // Acta Mater. 2019. V. 173. P. 27. https://doi.org/10.1016/j.actamat.2019.04.056
  91. von Ranke P.J., E.P Nóbrega, de Oliveira I.G. et al. // Phys. Rev. B. 2001. V. 63. № 18. P. 184406. https://doi.org/10.1103/PhysRevB.63.184406
  92. Gschneisdner Jr. K.A., Pecharsky V.K. // Annual Rev. Mater. Sci. 2000. V. 30. P. 387. https://doi.org/10.1146/annurev.matsci.30.1.387
  93. Мишин Д.Д. Магнитные материалы. М.: Высш. школа, 1991.
  94. Кандаурова Г.С. // Соросов. образоват. журн. 1997. № 1. С. 100.
  95. Anand A., Manjuladevi M., Veena R.K. et al. // J. Magn. Magn. Mater. 2021. V. 528. Article No. 167810. https://doi.org/10.1016/j.jmmm.2021.167810

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (67KB)

Declaração de direitos autorais © Ю.С. Кошкидько, Э.Т. Дильмиева, А.П. Каманцев, А.В. Маширов, Я. Цвик, Н.Б. Кольчугина, В.В. Коледов, В.Г. Шавров, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies