Photoinduced Microwave Permittivity of Semiconductors: Exciton Mechanism

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Significant differences observed in the behavior of photoinduced permittivity ε of semiconductors in the gigahertz (GHz) and terahertz (THz) ranges are explained within the framework of the exciton mechanism by the different position of these ranges relative to the frequencies of exciton interlevel transitions. The measurements in the GHz range of the photoinduced changes of quantities Imε(P_λ) and Reε(P_λ) of CdS, CdSe and Si samples in a waveguide resonator (f = 4.7 GHz) and transmittance T of Si samples in free space (f = 8–36 GHz ) under fiber-optic irradiation (P_λ = 0–370 mW and λ = 0.97 μm) that exhibit non-Drude response prove the theoretical conclusions: an increase in Reε^(GHz)(P_λ) with increasing P_λ and an increase in transmittance T with decreasing frequency f at fixed power P_λ.

About the authors

V. S. Butylkin

Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of Sciences

Email: vasebut@yandex.ru
Fryazino, Moscow oblast, 141190 Russia

P. S. Fisher

Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of Sciences

Email: vasebut@yandex.ru
Fryazino, Moscow oblast, 141190 Russia

G. A. Kraftmakher

Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of Sciences

Email: vasebut@yandex.ru
Fryazino, Moscow oblast, 141190 Russia

Yu. N. Kazantsev

Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of Sciences

Email: vasebut@yandex.ru
Fryazino, Moscow oblast, 141190 Russia

D. S. Kalenov

Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of Sciences

Email: vasebut@yandex.ru
Fryazino, Moscow oblast, 141190 Russia

V. P. Maltsev

Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of Sciences

Email: vasebut@yandex.ru
Fryazino, Moscow oblast, 141190 Russia

M. P. Parkhomenko

Kotelnikov Institute of Radio Engineering and Electronics, Fryazino Branch, Russian Academy of Sciences

Author for correspondence.
Email: vasebut@yandex.ru
Fryazino, Moscow oblast, 141190 Russia

References

  1. Brown A.R., Rebeiz G.M. // IEEE Trans. 2000. V. MTT-48. № 7. P. 1157.
  2. Замешаева Е.Ю., Туральчук П.А., Тургалиев В.М. и др. // Письма в ЖТФ. 2013. Т. 39. № 18. С. 87.
  3. Геворкян В., Кочемасов В., Устинов А. // Компоненты и технологии. 2017. № 3. С. 16.
  4. Srinivasan G., Tatarenko A.S., Bichurin M.I. // Electron. Lett. 2005. V. 41. № 10. P. 596.
  5. Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н., Мальцев В.П. // Письма в ЖЭТФ. 2019. Т. 109. № 4. С. 224.
  6. Chen H.T., O’Hara J.F., Azad A.K., Taylor A.J. // Laser Photonics Rev. 2011. V. 5. № 4. P. 513.
  7. Padilla W.J., Taylor A.J., Highstrete C. et al. // Phys. Rev. 2006. V. 96. № 10. P. 107401.
  8. Chen H.T., Padilla W.J., Zide J. et al. // Nature. 2006. V. 444. № 7119. P. 597. https://doi.org/10.1038/nature05343
  9. Xiao S., Wang T., Jiang X. et al. // J. Phys. D: Appl. Phys. 2020. V. 53. № 50. P. 503002.
  10. Manceau J.M., Shen N.-H., Kafesaki M. et al. // Appl. Phys. Lett. 2010. V. 96. № 2. P. 021111.
  11. Nemati A., Wang Q., Hong M.H., Teng J.H. // Opto-Electron Advances. 2018. V.1. № 18. P. 180009. https://doi.org/10.29026/oea.2018.180009
  12. Zhou J., Chowdhury D.R., Zha R. et al. // Phys. Rev. B. 2012. V. 86. № 3. P. 035448. https://doi.org/10.1103/PhysRevB.86.035448
  13. Крафтмахер Г.А., Бутылкин В.С., Казанцев Ю.Н. и др. // Письма в ЖЭТФ. 2021. Т. 114. № 9. С. 586.
  14. Маделунг О. Теория твердого тела. М.: Наука, 1980. С. 414.
  15. Бутылкин В.С., Фишер П.С., Крафтмахер Г.А. и др. // РЭ. 2022. Т. 67. № 12. С. 1185.
  16. Файн В.М. Фотоны и нелинейные среды. М.: Сов. радио, 1972. С. 472.
  17. Бутылкин В.С., Каплан А.Е., Хронопуло Ю.Г., Якубович Е.И. Резонансные взаимодействия света с веществом. М.: Наука, 1977. С. 352.
  18. Митропольский Ю.А. Метод усреднения в нелинейной механике. Киев: Наукова думка, 1971. С. 440.
  19. Busch S., Scherger B., Scheller M., Koch M. // Optics Lett. 2012. V. 37. № 8. P. 1391.
  20. Лакс Б., Баттон К. Сверхвысокочастотные ферриты и ферримагнетики. М.: Мир, 1965. С. 675.
  21. Казанцев Ю.Н., Крафтмахер Г.А. // Физика металлов и металловедение. 1989. Т. 67. № 5. С. 902.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (59KB)
3.

Download (25KB)
4.

Download (37KB)

Copyright (c) 2023 В.С. Бутылкин, П.С. Фишер, Г.А. Крафтмахер, Ю.Н. Казанцев, Д.С. Каленов, В.П. Мальцев, М.П. Пархоменко

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies