Frequency Converters for the Terahertz and Infrared Ranges

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A method for solving the problem of nonlinear diffraction on two-dimensional periodic gratings of graphene ribbons has been developed. The third-order nonlinear conductivity of graphene under the action of two waves is taken into account, which is determined by the field of the pump wave, for which we use the field on graphene ribbons obtained by solving the linear diffraction problem. Numerical analysis shows the efficiency of nonlinear frequency conversion in the terahertz and infrared ranges when the frequencies of the incident pump and signal waves coincide with the resonant frequencies of the fundamental and higher order modes of surface plasmon polaritons in graphene ribbons.

About the authors

A. M. Lerer

Southern Federal University

Email: lerer@sfedu.ru
Taganrog, 344090 Russia

G. S. Makeev

Penza State University

Email: lerer@sfedu.ru
Penza, 440026 Russia

V. V. Cherepanov

Southern Federal University

Author for correspondence.
Email: lerer@sfedu.ru
Taganrog, 344090 Russia

References

  1. Nagatsuma T., Horiguchi Sh., Minamikata Y. et al. // Opt. Express. 2013. V. 21. № 20. P. 23736.
  2. HouY., Jiang C. // Current Chinese Physics. 2021. V. 1. № 3. P. 299. https://doi.org/10.2174/221029810166621020416263
  3. Hu X., Zeng M., Wang A., Zhu L. et al. // Opt. Express. 2015 V. 23. № 20. P. 26158.
  4. Deng H., Huang., He Y., Ye F. // Chinese Physics. B. 2021. V. 30. № 4. P. 044213.
  5. Ooi K. J.A., Cheng J.L., Sipe J.E. et al. // APL Photonics. 2016. V. 1. № 4. P. 046101. https://doi.org/10.1063/1.4948417
  6. Cox J.D., Garcia de Abajo F.J. // ACS Photonics. 2015. V. 2. № 3. P. 306.
  7. Cao J., Kong Y., Gao S., Liu C. // Optics Commun. 2018. V. 406. P. 183.
  8. Лepep A.M. // PЭ. 2012. T. 57. № 11. C. 1160. https://doi.org/10.1134/S106422691210004X
  9. Лерер А.М., Иванова И.Н. // РЭ. 2016. Т. 61. № 5. С. 435. https://doi.org/10.1134/S1064226916050089
  10. Лерер А.М., Макеева Г.С., Черепанов В.В. // РЭ. 2021. Т. 66. № 6. С. 543. https://doi.org/10.31857/S0033849421060188
  11. Hanson G.W. // J. Appl. Phys. 2008. V. 103. № 6. P. 064302.
  12. Cheng J.L., Vermeulen N., Sipe J. // Phys. Rev. B. 2015. V. 91. № 23. P. 235320.
  13. Mikhailov S.A. // Phys. Rev. B. 2016. V. 93. № 8. P. 085403.
  14. Лерер А.М., Иванова И.Н., Макеева Г.С., Черепанов В.В. // Оптика и спектроскопия. 2021. Т. 129. № 3. С. 342.
  15. Cox J.D., Garcia de Abajo F.J. // Accounts Chemical Research. 2019. V. 52. № 9. P. 2536.
  16. Lerer A.M., Makeeva G.S., Cherepanov V.V. // Mater. 2020 Int. Conf. Actual Problems of Electron Devices Engineering (APEDE). Saratov. 24–25 Sept. N.Y.: IEEE, 2020. P. 269. https://doi.org/10.1109/APEDE48864.2020.9255492

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (149KB)
3.

Download (381KB)
4.

Download (121KB)
5.

Download (137KB)
6.

Download (131KB)

Copyright (c) 2023 А.М. Лерер, Г.С. Макеева, В.В. Черепанов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies