Frequency Converters for the Terahertz and Infrared Ranges

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method for solving the problem of nonlinear diffraction on two-dimensional periodic gratings of graphene ribbons has been developed. The third-order nonlinear conductivity of graphene under the action of two waves is taken into account, which is determined by the field of the pump wave, for which we use the field on graphene ribbons obtained by solving the linear diffraction problem. Numerical analysis shows the efficiency of nonlinear frequency conversion in the terahertz and infrared ranges when the frequencies of the incident pump and signal waves coincide with the resonant frequencies of the fundamental and higher order modes of surface plasmon polaritons in graphene ribbons.

Sobre autores

A. Lerer

Southern Federal University

Email: lerer@sfedu.ru
Taganrog, 344090 Russia

G. Makeev

Penza State University

Email: lerer@sfedu.ru
Penza, 440026 Russia

V. Cherepanov

Southern Federal University

Autor responsável pela correspondência
Email: lerer@sfedu.ru
Taganrog, 344090 Russia

Bibliografia

  1. Nagatsuma T., Horiguchi Sh., Minamikata Y. et al. // Opt. Express. 2013. V. 21. № 20. P. 23736.
  2. HouY., Jiang C. // Current Chinese Physics. 2021. V. 1. № 3. P. 299. https://doi.org/10.2174/221029810166621020416263
  3. Hu X., Zeng M., Wang A., Zhu L. et al. // Opt. Express. 2015 V. 23. № 20. P. 26158.
  4. Deng H., Huang., He Y., Ye F. // Chinese Physics. B. 2021. V. 30. № 4. P. 044213.
  5. Ooi K. J.A., Cheng J.L., Sipe J.E. et al. // APL Photonics. 2016. V. 1. № 4. P. 046101. https://doi.org/10.1063/1.4948417
  6. Cox J.D., Garcia de Abajo F.J. // ACS Photonics. 2015. V. 2. № 3. P. 306.
  7. Cao J., Kong Y., Gao S., Liu C. // Optics Commun. 2018. V. 406. P. 183.
  8. Лepep A.M. // PЭ. 2012. T. 57. № 11. C. 1160. https://doi.org/10.1134/S106422691210004X
  9. Лерер А.М., Иванова И.Н. // РЭ. 2016. Т. 61. № 5. С. 435. https://doi.org/10.1134/S1064226916050089
  10. Лерер А.М., Макеева Г.С., Черепанов В.В. // РЭ. 2021. Т. 66. № 6. С. 543. https://doi.org/10.31857/S0033849421060188
  11. Hanson G.W. // J. Appl. Phys. 2008. V. 103. № 6. P. 064302.
  12. Cheng J.L., Vermeulen N., Sipe J. // Phys. Rev. B. 2015. V. 91. № 23. P. 235320.
  13. Mikhailov S.A. // Phys. Rev. B. 2016. V. 93. № 8. P. 085403.
  14. Лерер А.М., Иванова И.Н., Макеева Г.С., Черепанов В.В. // Оптика и спектроскопия. 2021. Т. 129. № 3. С. 342.
  15. Cox J.D., Garcia de Abajo F.J. // Accounts Chemical Research. 2019. V. 52. № 9. P. 2536.
  16. Lerer A.M., Makeeva G.S., Cherepanov V.V. // Mater. 2020 Int. Conf. Actual Problems of Electron Devices Engineering (APEDE). Saratov. 24–25 Sept. N.Y.: IEEE, 2020. P. 269. https://doi.org/10.1109/APEDE48864.2020.9255492

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (149KB)
3.

Baixar (381KB)
4.

Baixar (121KB)
5.

Baixar (137KB)
6.

Baixar (131KB)

Declaração de direitos autorais © А.М. Лерер, Г.С. Макеева, В.В. Черепанов, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies