XPS determination of the oxidation state of 99Тс isotope absorbed on the surface of pirrhotite FenSn+1 and stibnite Sb2S3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sorption of pertechnetate on pyrrhotite FenSn+1 (I) and stibnite Sb2S3 (II) from distilled water was evaluated. The distribution coefficients were found to be 185 and 223 cm3/g, respectively. The XPS study of the chemical state of 99Tc absorbed on the surface of pyrrhotite and stibnite from aqueous solution of potassium pertechnetate (KTcO4) was carried out. It was found that Tc(IV) ions are present mostly on the surface of the studied samples, their concentration was 5.7 times higher on the surface of pyrrhotite compared to that on the surface of stibnite. A 13% admixture of Tc(VII) ions on the surface of pyrrhotite was observed.

About the authors

K. I. Maslakov

Lomonosov Moscow State University; NRC “Kurchatov Institute”

Email: antonxray@yandex.ru

Radiochemistry Division, Chemistry Department

Russian Federation, Moscow; Kurchatov sq. 1, Moscow, 123182

A. Yu. Teterin

NRC “Kurchatov Institute”

Author for correspondence.
Email: antonxray@yandex.ru
Russian Federation, Kurchatov sq. 1, Moscow, 123182

A. V. Safonov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: antonxray@yandex.ru
Russian Federation, Moscow

A. V. Makarov

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: antonxray@yandex.ru
Russian Federation, Moscow

G. D. Artemiev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: antonxray@yandex.ru
Russian Federation, Moscow

Yu. A. Teterin

Lomonosov Moscow State University; NRC “Kurchatov Institute”

Email: antonxray@yandex.ru

Radiochemistry Division, Chemistry Department

Russian Federation, Moscow; Kurchatov sq. 1, Moscow, 123182

S. V. Dvoriak

Lomonosov Moscow State University

Email: antonxray@yandex.ru

Radiochemistry Division, Chemistry Department

Russian Federation, Moscow

References

  1. Chatterjee S., Hall G.B., Jonson I.E., Du Y., Walter E.D., Washton N.M., Levitskaia T.G. // Inorg. Chem. Front. 2018. Vol. 5. P. 2081. https://doi.org/10.1039/C8QI00219C
  2. Meena A.H., Arai Y. // Environ. Chem. Lett. 2017. Vol. 15. N 2. P. 241–263. https://doi.org/10.1007/s10311-017-0605-7
  3. Garcia-Leon M. // J. Nucl. Radiochem. Sci. 2005. Vol. 6. N3. P. 253–259. https://doi.org/10.14494/jnrs2000.6.3_253
  4. Попова Н.Н., Тананаев И.Г., Ровный С.И., Мясоедов Б.Ф. // Успехи химии. 2003. Т. 72, № 2. С. 115–137. https://doi.org/10.1070/RC2003v072n02ABEH000785
  5. Makarov A.V., Safonov A.V., Konevnik Yu.V., Teterin Yu.A., Maslakov K.I., Teterin A. Yu. et al. // J. Hazard. Mater. 2021. Vol. 401. Article 123436 https://doi.org/10.1016/j.jhazmat.2020.123436
  6. Pegg I.L. // J. Radioanal. Nucl. Chem. 2015. Vol. 305. P. 287–292. https://doi.org/10.1007/s10967-014-3900-9
  7. Westsik J.H., Cantrell K.J., Serne R.J., Qafoku N.P. Technetium Immobilization Forms Literature Survey, PNNL-23329, EMSP-RPT-023 Pacific Northwest National Laboratory, Richland, WA, 2014. https://doi.org/10.2172/1130666
  8. Kamorny D.A., Safonov A.V., Boldyrev K.A., Abramova E.S., Tyupina E.A., Gorbunova O.A. // J. Nucl. Mater. 2021. Vol. 557. N 7. Article 153295. https://doi.org/10.1016/j.jnucmat.2021.153295
  9. Laverov N.P., Yudintsev S.V., Konovalov E.E., Mishevets T.O., Nikonov B.S., Omel’yanenko B.I. // Dokl. Chem. 2010. Vol. 431. P. 71–75. https://doi.org/10.1134/S0012500810030031
  10. Makarov A., Safonov A., Sitanskaia A., Martynov K., Zakharova E., Kulyukhin S. // Prog. Nucl. Energy. 2022. Vol. 152. Article 104398. https://doi.org/10.1016/j.pnucene.2022.104398
  11. Safonov A., Novikov A., Volkov M., Sitanskaia A., German K. // J. Radioanal. Nucl. Chem. 2023. Vol. 332. P. 2195–2204. https://doi.org/10.1007/s10967-023-08830-7
  12. Cantrell K.J., Williams B.D. // J. Nucl. Mater. 2013. V. 437, N 1–3. P. 424–431. https://doi.org/10.1016/j.jnucmat.2013.02.049
  13. May T., Matlack K.S., Muller I.S., Pegg I.L., Joseph I. Improved Technetium Retention in Hanford LAW Glass–Phase 1 Final Report. RPP-RPT-45887, Rev 0. Richland, WA: Washington River Protection Solutions, LLC.
  14. Um W., Chang H.S., Icenhower J.P., Lukens W.W., Serne R.J., Qafoku N. et al. // Environ. Sci. Technol. 2011. Vol. 45. N 11. P. 4904–4913. https://doi.org/10.1021/es104343p.
  15. Um W., Chang H.S., Icenhower J.P., Lukens W.W., Serne R.J., Qafoku N. et al. // J. Nucl. Mater. 2012. Vol. 429. N 1–3. P. 201–209. https://doi.org/10.1016/j.jnucmat.2012.06.004
  16. Singh B.K., Mahzan N.S., Abdul Rashid N.S., Isa S.A., Hafeez M.A., Saslow S., Um W. // Environ. Sci. Technol. 2023. Vol. 57. N 17. P. 6776–6798. https://doi.org/10.1021/acs.est.3c00129
  17. Arai Y., Powell B.A., Kaplan D.I. // J. Hazard. Mater. 2018. Vol. 342. P. 510–518. https://doi.org/10.1016/j.jhazmat.2017.08.049
  18. Luksic S.A., Riley B.J., Schweiger M., Hrma P. // J. Nucl. Mater. 2015. Vol. 466. P. 526–538. https://doi.org/10.1016/j.jnucmat.2015.08.052
  19. Skomurski F.N., Rosso K.M., Krupka K.M., McGrail B.P. // Environ. Sci. Technol. 2010. Vol. 44. P. 5855–5861. https://doi.org/10.1021/es100069x
  20. Smith F.N., Um W., Taylor C.D., Kim D.S., Schweiger M.J., Kruger A.A. // Environ. Sci. Technol. 2016. Vol. 50. N 10. P. 5216–5224. https://doi.org/10.1021/acs.est.6b00200
  21. McBeth J.M., Lloyd J.R., Law G.T.W., Livens F.R., Burke I.T., Morris K. // Mineral. Mag. 2011. Vol. 75. N 4. P. 2419–2430. https://doi.org/10.1180/minmag.2011.075.4.2419
  22. Pearce C.I., Icenhower J.P., Asmussen R.M., Tratnyek P.G., Rosso K.M., Lukens W.W., Qafoku N.P. // ACS Earth Space Chem. 2018. Vol. 2. N 6. P. 532–547. https://doi.org/10.1021/acsearthspacechem.8b00015
  23. El-Waer S., German K.E., Peretrukhin V.F. // J. Radioanal. Nucl. Chem. 1992. Vol. 157. P. 3–14. https://doi.org/10.1007/BF02039772
  24. Chen Z., Zhang P., Brown K.G., van der Sloot H.A., Meeussen J.C., Garrabrants A.C. et al. // J. Hazard. Mater. 2023. Vol. 449. Article 131004. https://doi.org/10.1016/j.jhazmat.2023.131004
  25. Pearce C.I., Moore R.C., Morad J.W., Asmussen R.M., Chatterjee S., Lawter A.R. et al. // Sci. Total Environ. 2020. Vol. 716. ID132849. https://doi.org/10.1016/j.scitotenv.2019.06.195
  26. German K.E., Shiryaev A.A., Safonov A.V., Obruchnikova Y.A., Ilin V.A., Tregubova V.E. // Radiochim. Acta. 2015. Vol. 103. N 3. P. 199. https://doi.org/10.1515/ract-2014–2369
  27. Fan D., Anitori R.P., Tebo B.M., Tratnyek P.G., Lezama Pacheco J.S., Kukkadapu R.K. et al. // Environ. Sci. Technol. 2014. Vol. 48. N 13. P. 7409–7417. https://doi.org/10.1021/es501607s
  28. Rodriguez D.M., Mayordomo N., Schild D., Azzam S.S.A., Brendler V., Mueller K., Stumpf T. // Chemosphere. 2021. Vol. 281. Article 130904. https://doi.org/10.1016/j.chemosphere.2021.130904
  29. Hatfield A.C. Aqueous geochemistry of rhenium and chromium in saltstone: Implications for understanding technetium mobility in saltstone: Doctoral Dissertation. Clemson Univ., 2013.
  30. Peretroukhine V., Sergeant C., Devès G., Poulain S., Vesvres M.H., Thomas B., Simonoff M. // Radiochim. Acta. 2006. Vol. 94. N 9–11. P. 665–669. https://doi.org/10.1524/ract.2006.94.9-11.665
  31. German K.E., Peretrukhin V.F., Belyaeva L.I., Kuzina O.V. // 4th Int. Conf. “Technetium and Rhenium in Chemistry and Nuclear Medicine,” Tc’94, Padua, Italy, Sept. 1994; J. Nucl. Biol. Med. 1994. Vol. 38. N 3. P. 406.
  32. German K.E., Peretrukhin V.F., Belyaeva L.I., Kuzina O.V. // Technetium and Rhenium Chemistry and Nuclear Medicine 4 / Eds. M. Nicolini, G. Bandoli, U. Mazzi. SGEditoriali, 1994. P. 93–97.
  33. Zhuang Η.E., Zheng J.S., Xia D.Y., Zhu Z.G. // Radiochim. Acta. 1995. Vol. 68. N 4. P. 245–250. https://doi.org/10.1524/ract.1995.68.4.245
  34. Данилов С.С., Фролова А.В., Тетерин А.Ю., Маслаков К.И., Тетерин Ю.А., Куликова С.А., Винокуров С.Е. // Радиохимия. 2021. Т. 63. № 6. С. 582. https://doi.org/10.31857/S0033831121060101
  35. Герасимов В.Н., Крючков С.В., Кузина А.Ф., Кулаков В.М., Пирожков С.В., Спицын В.И. // ДАН СССР. 1982. Т. 266. C. 148.
  36. Wester D.W., White D.H., Miller F.W., Dean R.T., Schreifels J.A., Hunt J.E. // Inorg. Chim. Acta. 1987. Vol. 131. N 2. P. 163. https://doi.org/10.1016/s0020-1693(00)96019-5
  37. Thompson M., Nunn A.D., Treher E.N. // Anal. Chem. 1986. Vol. 58. P. 3100. https://doi.org/10.1021/AC00127A041
  38. Shirley D.A. // Phys. Rev. B. 1972. Vol. 5. P. 4709. https://doi.org/10.1103/PhysRevB.5.4709
  39. Панов А.П. Пакет программ обработки спектров SPRO и язык программирования SL: Препринт ИАЭ-6019/15. М.: Ин-т атом. энергии, 1997. 31 c.
  40. Немошкаленко В.В., Алешин В.Г. Электронная спектроскопия кристаллов. Киев: Наук. думка, 1976. 336 с.
  41. Band I.M., Kharitonov Yu.I., Trzhaskovskaya M.B. // At. Data Nucl. Data Tables. 1979. Vol. 23. P. 443. https://doi.org/10.1016/0092-640X(79)90027-5.
  42. Gerasimov V.N., Kryutchkov S.V., German K.E., Kulakov V.M., Kuzina A.F. // Technetium and Rhenium in Chemistry and Nuclear Medicine. Vol. 3 / Eds. M. Nicolini, G. Bandoli, U. Mazzi. New York: Raven, 1990. P. 231–252.
  43. Нефедов В.И. Рентгеноэлектронная спектроскопия химических соединений: Справочник. М.: Химия, 1984. 256 с.
  44. Sosulnikov M.I., Teterin Yu.A. // J. Electron. Spectrosc. Relat. Phenom. 1992. Vol. 59. P. 111. https://doi.org/10.1016/0368-2048(92)85002-O
  45. Childs B.C., Braband H., Lawler K., Mast D.S., Bigler L., Stalder U. et al. // Inorg. Chem. 2016. Vol. 55. N 20. P. 10445. https://doi.org/10.1021/acs.inorgchem.6b01683
  46. Rodriguez E.E., Poineau F., Llobet A., Sattelberger A.P., Bhattacharjee J., Waghmare U.V. et al. // J. Am. Chem. Soc. 2007. Vol. 129. P. 10244. https://doi.org/10.1021/ja0727363
  47. Rodríguez D.M., Mayordomo N., Scheinost A.C., Schild D., Brendler V., Müller K., Stumpf T. // Environ. Sci. Technol. Vol. 2020. 54. P. 2678–2687. https://doi.org/10.1021/acs.est.9b05341
  48. Bagus P.S., Nelin C.J., Brundle C.R., Crist B.V., Lahiri N., Rosso K.M. // J. Chem. Phys. 2021. Vol. 154. Article 094709. https://doi.org/10.1063/5.0039765
  49. Zimmerman R., Steiner P., Claessen R., Reinert F., Hüfner S., Blaha P., Dufek P. // J. Phys. Condens. Matter. 1999. Vol. 11. P. 1657. https://doi.org/10.1088/0953-8984/11/7/002
  50. Miedema P.S., Borgatti F., Offi F., Panaccione G., Groota F.M.F. // J. Electron Spectrosc. Relat. Phenom. 2015. Vol. 203. P. 8. https://doi.org/10.1016/j.elspec.2015.05.003
  51. Biesinger M.C., Payne B.P., Grosvenor A.P., Laua L.W.M., Gerson A.R., Smart R. St.C. // Appl. Surf. Sci. 2011. Vol. 257. P. 2717. https://doi.org/10.1016/j.apsusc.2010.10.051
  52. Droubay T., Chambers S.A. // Phys. Rev. B. 2001. Vol. 64. Article 205414. https://doi.org/10.1103/PhysRevB.64.205414

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies