Application of the Method of Fast Expansions to Construction of a Trajectory of Movement of a Body with Variable Mass from Its Initial Position in a Gained Final Position in a Gravitational Field

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An analytical solution of the problem of the movement of a spacecraft from the starting point to the final point in a certain time is given. First, the method of fast sine expansions is used. The space problem considered here is essentially non-linear, what necessitates the use of trigonometric interpolation methods, which surpass all known interpolations in accuracy and simplicity. In this case, the problem of calculating Fourier coefficients by integral formulas is replaced by the solution of an orthogonal interpolation system. In this regard, two cases are considered on the segment \(\left[ {0,a} \right]\): universal interpolation and trigonometric sine and cosine interpolations. A theorem on the rapid decrease of expansion coefficients is proved, and a compact formula for calculating the interpolation coefficients is obtained. A general theory of fast expansions is given. It is shown that in this case, the Fourier coefficients decrease significantly faster with the growth of the ordinal number compared to the Fourier coefficients in the classical case. This property makes it possible to significantly reduce the number of terms taken into account in the Fourier series, significantly increase the accuracy of calculations and reduce the amount of calculations on a computer. The analysis of the obtained solutions of the spacecraft motion problem is carried out and their comparison with the exact solution of the test problem is proposed. An approximate solution by the method of fast expansions can be taken as an exact one, since the input data of the problem used from reference books have a higher error.

Sobre autores

A. Chernyshov

The Voronezh State University of Engineering Technologies

Autor responsável pela correspondência
Email: chernyshovad@mail.ru
Russia, Voronezh

M. Popov

The Voronezh State University

Autor responsável pela correspondência
Email: mihail_semilov@mail.ru
Russia, Voronezh

V. Goryainov

The Voronezh State Technical University

Autor responsável pela correspondência
Email: gorvit77@mail.ru
Russia, Voronezh

O. Nikiforova

The Voronezh State University of Engineering Technologies

Autor responsável pela correspondência
Email: niki22@mail.ru
Russia, Voronezh

Bibliografia

  1. Karagodin V.V. Approximate methods for calculating the extra-atmospheric active section of the trajectory // Trudy MAI, 2013, iss. 66. http://trudymai.ru/published.php?ID=40267
  2. Appazov R.F., Sytin O.G. Methods of Projecting Trajectories of Carriers and Satellites of the Earth. Moscow: Nauka, 1987. 440 p.
  3. Benevolsky S.V. Mathematical models of motion for the synthesis of guidance methods for promising ballistic missiles. // Defense Techn., 2007, no. 3–4, pp. 12–16.
  4. Hairer E., Nursett S., Wanner G. Solution of Ordinary Differential Equations. Non-Rigid Tasks. Moscow: Mir, 1990. 512 p.
  5. Benevolsky S.V., Kozlov P.G. Semi-analytical method for aircraft trajectory reconstruction from generalized design parameters and control system parameters and prospects for its use. // Electr. Sci.&Techn. Pub. “Science and Education”, 2011, no. 10. http://technomag.edu.ru/doc/216895.html
  6. Chernyshov A.D. Method of fast expansions for solving nonlinear differential equations // Comput. Math.&Math. Phys., 2014, vol. 54, iss. 1, pp. 11–21.
  7. Chernyshov A.D., Goryainov V.V. Solution of one non-linear integro-differential equation by the method of fast expansions // Bull. ChGPU im. I.Ya. Yakovlev. Ser.: Limit State Mech., 2012, no. 4(12), pp. 105–112.
  8. Chernyshov A.D. Solution of a nonlinear heat conduction equation for a curvilinear region with Dirichlet conditions by the fast-expansion method // J. Engng. Phys.&Thermophys., 2018, vol. 91, no. 2, pp. 433–444.
  9. Chernyshov A.D. Solution of the Stefan two-phase problem with an internal source and of heat conduction problems by the method of rapid expansions // J. Engng. Phys.&Thermophys., 2021, vol. 94, no. 1, pp. 95–112.
  10. Chernyshov A.D., Goryainov V.V., Chernyshov O.A. Application of the fast expansion method for spacecraft trajectory calculation. // Rus. Aeron., 2015, vol. 58, no. 2, pp. 180–186.
  11. Chernyshov A.D., Saiko D.S., Kovaleva E.N. Universal fast expansion for solving nonlinear problems // J. Phys.: Conf. Ser., 2020, vol. 1479, art. no. 012147.
  12. Goryacheva I.G., Goryachev A.P. Contact problems of the sliding of a punch with a periodic relief on a viscoelastic half-plane // JAMM, 2016, vol. 80, iss. 1, pp. 73–83.
  13. Chernyshov A.D., Goryainov V.V., Lyashenko O.V., Soboleva E.A., Nikiforova O.Yu. Comparison of the convergence rate of fast expansions with decompositions in the classical Fourier series // Bull. Voronezh State Univ. Ser.: Syst. Anal.&Inform. Technol., 2019, no. 1, pp. 27–34.
  14. Chernyshov A.D., Goryainov V.V. About a choice of an optimum order of boundary function in rapid expansion // Bull. Voronezh State Univ. Ser.: Syst. Anal.&Inform. Technol., 2011, no. 1, pp. 60–65.
  15. Ilyin V.A. Spectral Theory of Differential Operators. Moscow: Nauka, 1991. 368 p.
  16. Isaev V.I., Shapeev V.P., Idimeshev S.V. High-accuracy versions of the collocations and least squares method for numerical solution of the Poisson equation // Comput. Technol., 2011, vol. 16, no. 1, pp. 85–93.
  17. Bakhvalov N.S., Zhidkov N.P., Kobelkov G.M. Numerical Methods. Moscow: Nauka, 1987. 800 p.
  18. Goryainov V.V., Popov M.I., Chernyshov A.D. Solving the stress problem in a sharp wedge-whaped cutting tool using the quick decomposition method and the problem of matching boundary conditions // Mech. Solids, 2019, vol. 54, no. 7, pp. 1083–1097.
  19. Chernyshov A.D., Popov V.M., Goryainov V.V., Leshonkov O.V. Investigation of contact thermal resistance in a finite cylinder with an internal source by the fast expansion method and the problem of consistency of boundary conditions // J. Engng. Phys.&Thermophys., 2017, vol. 90, no. 5, pp. 1225–1233.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © А.Д. Чернышов, М.И. Попов, В.В. Горяйнов, О.Ю. Никифорова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».