Analysis of nonstationary vibrations of a nonlinear plate on an elastic half-space via ray expansions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The ray method is an effective method for solving problems related to the generation and propagation of wave surfaces of strong and weak discontinuities, including problems of dynamic contact interaction. Nonstationary vibrations could be caused by the action of instantaneous loads on the plate, resulting in the propagation of wave surfaces of strong and weak discontinuity in an elastic half-space. The solution behind the wave fronts up to the contact boundary is constructed using ray expansions. Unknown functions entering in the coefficients of the ray series and in the equation of plate motion are determined from the boundary conditions of the contact interaction between the plate and the half-space. The “manual” procedure (without using any mathematical packages) for calculating the ray series coefficients is rather cumbersome, therefore an algorithm to solve this problem using the Maplesoft has been suggested by the authors for different types of contact conditions first for linear problems. In this paper, the ray method and the developed algorithm are applied to analyze the unsteady response of an infinitely long elastic nonlinear classical von Karman plate of constant thickness lying on an elastic isotropic half-space.

About the authors

M. V. Shitikova

National Research Moscow State University of Civil Engineering

Author for correspondence.
Email: ShitikovaMV@mgsu.ru
Moscow 127238 Russia

A. S. Bespalova

National Research Moscow State University of Civil Engineering

Email: BespalovaAS@mgsu.ru
Moscow 127238 Russia

References

  1. Porutchikov V.B. Methods of Dynamic Theory of Elasticity. Moscow: Nauka, 1986. (in Russian)
  2. Rakhmatulin H.A., Demyanov Y.A. Strength of Materials under Intensive Short-Term Loads. Moscow: Universitetskaya kniga, 2020. (in Russian)
  3. Gorshkov A.G., Tarlakovsky D.V. Dynamic Contact Problems with Moving Boundaries. Moscow: Fizmatlit, 1995. (in Russian)
  4. Seimov V.M. Dynamic contact problems. Kyiv: Naukova Dumka, 1976. (in Russian)
  5. Vestyak A.V., Gorshkov A.G., Tarlakovsky D.V. Non-stationary interaction of deformable bodies with the environment // Results of science and technology. Series: Mechanics of deformable solids. Moscow: VINITI, 1983, vol. 15, pp. 69–148. (in Russian)
  6. Shitikova M.V. Wave theory of impact and Professor Yury Rossikhin contribution in the field (A memorial survey) // J. of Material Eng.& Perform., 2019, vol. 28, pp. 3161–3173. https://doi.org/10.1007/s11665-018-3824-6
  7. Rossikhin Yu.A., Shitikova M.V. Ray method for solving dynamic problems connected with propagation of wave surfaces of strong and weak discontinuities // Appl. Mech. Rev., 1995, vol. 48, no 1, pp. 1–39. http://dx.doi.org/10.1115/1.3005096
  8. Podilchuk Yu.N., Rubtsov Yu.K. Ray methods in the theory of wave propagation and scattering. Kyiv: Naukova Dumka, 1988. (in Russian)
  9. Podil’chuk Y.N., Rubtsov Y.K. Use of ray methods in problems of wave propagation and scattering (review) // Int. Appl. Mech., 1996, vol. 32, pp. 907–930. https://doi.org/10.1007/BF02086475
  10. Achenbach J.D. Wave Propagation in Elastic Solids. Series in Applied Mathematics and Mechanics. North-Holland: Elsevier, 1973.
  11. Rossikhin Yu.A. On nonstationary vibrations of plates on an elastic foundation // J. Appl. Math. Mech., 1978, vol. 42, no. 2, pp. 347–353. https://doi.org/10.1016/0021-8928(78)90153-3
  12. Rossikhin Yu.A., Shitikova M.V. Non-stationary vibrations of a plate on an elastic half-space // J. Sound&Vibr., 1995, vol. 181, no. 3, pp. 417–429. https://doi.org/10.1006/jsvi.1995.0149
  13. Rossikhin Yu.A., Shitikova M.V. Thermal shock upon the surface of a plate resting on a thermoelastic isotropic half-space // J. Thermal Stresses, 1995, vol. 18, no. 3, pp. 291–311. https://doi.org/10.1080/01495739508946304
  14. Achenbach J.D., Gautesen A.K., McMaken H. Ray Methods for Waves in Elastic Solids. Boston: Pitman, 1982.
  15. Shitikova M.V., Bespalova A.S. Numerical analysis of unsteady vibrations of a plate resting on an elastic isotropic half-space // WSEAS Trans. Appl. Theor. Mech., 2024, vol. 19, pp. 12–20. https://doi.org/10.37394/232011.2024.19.2
  16. Rossikhin Yu.A., Shitikova M.V. To the construction of uniformly valid forward-area asymptotics in terms of ray method in dynamic problems of linear viscoelasticity // Trans. ASME. J. Appl. Mech., 1994, vol. 61, no. 3, pp. 744–746. https://doi.org/10.1115/1.2901532
  17. Altenbach H., Öchsner А. (editors). Encyclopedia of Continuum Mechanics/ Berlin-Heidelberg: Springer, 2020. https://doi.org/10.1007/978-3-662-53605-6
  18. Rossikhin Yu.A., Shitikova M.V. Ray expansion theory // Encyclopedia of Continuum Mechanics, 2020, vol. 3, pp. 2126–2141. https://doi.org/10.1007/978-94-007-2739-7_940
  19. Rossikhin Yu.A., Burenin A.A., Potianikhin D.A. Shock waves via ray expansions // Encyclopedia of Continuum Mechanics, 2020, vol. 3, pp. 2264–2279. https://doi.org/10.1007/978-3-662-53605-6_100-1
  20. Chigarev A.V., Chigarev Yu.V. Rays propagation in inhomogeneous media // Encyclopedia of Continuum Mechanics, 2020, vol. 3, pp. 2170–2180. https://doi.org/10.1007/978-3-662-55771-6_101
  21. Rossikhin Yu.A., Shitikova M.V. Discontinuity surfaces in elasto-visco-plastic medium // Encyclopedia of Continuum Mechanics, 2020, vol. 1, pp. 635–642. https://doi.org/10.1007/978-3-662-55771-6_105
  22. Chigarev A.V., Chigarev Yu.V. Nonlinear rays and fronts dynamics in stochastically inhomogeneous media and in media with deterministic structure // Encyclopedia of Continuum Mechanics, 2020, vol. 3, pp. 1847–1863. https://doi.org/10.1007/978-3-662-55771-6_107
  23. Rossikhin Yu.A., Shitikova M.V. Ray expansions in dynamic contact problems // Encyclopedia of Continuum Mechanics, 2020, vol. 3, pp. 1–19. https://doi.org/10.1007/978-3-662-53605-6_98-1
  24. Rossikhin Yu.A., Shitikova M.V. Ray expansions in impact interaction problems // Encyclopedia of Continuum Mechanics, 2019, vol. 3, pp. 1–11. https://doi.org/10.1007/978-3-662-53605-6_99-1
  25. Thomas T.Y. Plastic Flow and Fracture in Solids. N.-Y.: Academic Press, 1961.
  26. Achenbach J.D., Reddy D.P. Note on wave propagation in linearly viscoelastic media // ZAMP, 1967, vol. 18, pp. 141–144. https://doi.org/10.1007/BF01593905
  27. Morfey C.L., Cotaras F.D. Propagation in inhomogeneous media (Ray theory) // Nonlinear Acoustics, 2024, pp. 337–370. https://doi.org/10.1007/978-3-031-58963-8_12
  28. Amiri S.N., Esmaeily A. Transient wave propagation in non-homogeneous viscoelastic media // IREME, 2013, vol. 7, no 5, pp. 847–856. https://doi.org/10.15866/IREME.V7I5.3858
  29. Sun C.-T. Transient rotary shear waves in nonhomogeneous viscoelastic media // Int. J. Solids&Struct., 1971, vol. 7, no. 1, pp. 25–37. https://doi.org/10.1016/0020-7683(71)90016-3
  30. Rossikhin Yu.A., Shitikova M.V. Transient waves in Cosserat beams, Ray expansion approach // Encyclopedia of Continuum Mechanics, 2020, vol. 3, pp. 2563–2572. https://doi.org/10.1007/978-3-662-55771-6_103
  31. Rossikhin Yu.A., Shitikova M.V. A new approach for studying the transient response of thin-walled beams of open profile with Cosserat-type micro-structure // Composite Struct., 2017, vol. 169, no. 4, pp. 153–166. http://dx.doi.org/10.1016/j.compstruct.2017.01.053
  32. Rossikhin Yu.A., Shitikova M.V. Transient waves propagation in the Mindlin microelastic medium // Mech. Adv. Mat. Struct., 2019, vol. 27, no. 19, pp. 1–5. http://dx.doi.org/10.1080/15376494.2018.1524033
  33. Murashkin E.V., Radayev Yu.N. On a pseudotensor generalization of the Hugoniot-Hadamard linking boundary conditions // Vestnik ChGPU im. I.Ya. Yakovleva. Seriya: Mekhanika Predel’nogo Sostoyaniya, 2021, no. 2, pp. 104–114. (in Russian) https://doi.org/10.37972/chgpu.2021.48.2.013
  34. Murashkin E.V., Radayev Yu.N. On a classification of weak discontinuities in micropolar thermoelasticity // Mat. Phys. Mech., 2015, vol. 23, pp. 10–13.
  35. Murashkin E.V., Radayev Yu.N. On strong and weak discontinuities of the coupled thermomechanical field in micropolar thermoelastic type-II continua // J. of Samara St.Tech. Univ., Series: Phys.& Math. Sci., 2014, vol. 4, pp. 85–97. (in Russian) https://doi.org/10.14498/vsgtu1331
  36. Rossikhin Yu.A., Shitikova M.V. Dynamic Response of Pre-Stresses Spatially Curved Thin-Walled Beams of Open Profile// Springer Briefs in Applied Science and Technology. Berlin-Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-20969-7
  37. Burenin A.A., Gerasimenko E.A., Kovtanyuk L.V. On the unloading dynamics in an elastic/viscoplastic material predeformed by viscometric twisting // Mat. Phys.&Mech., 2023, vol. 51, № 1, pp. 68–83. http://dx.doi.org/10.18149/MPM.5112023_7
  38. Gerasimenko E.A. On the problem of gap extraction in numerical calculations of deformation dynamics // Uch. Zapiski Koms.-na-Amur. Gos. Univ., 2022, no. 5, pp. 46–54. (in Russian) https://doi.org/10.17084/20764359-2022-61-46
  39. Burenin A.A., Gerasimenko E.A. On the surfaces of strain discontinuity in dynamics of elastic media // Izv. TulGU. Tech. Nauki, 2023, no. 7, pp. 55–60. (in Russian)
  40. Ragozina V.E., Ivanova Yu.E., Dudko O.V. Approximate near-front ray solutions in the axisymmetric strain dynamics of a linear elastic half-space // J. Appl.&Ind. Math., 2024, vol. 18, no. 3, pp. 521–535. https://doi.org/10.1134/s199047892403013x
  41. Birger I.A., Panovko Ya.G. (eds) Strength, Stability, Vibrations, Vol. 3. Moscow: Mashinostroenije, 1968. (in Russian)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).