The periodic contact problem of the theory of elasticity: taking friction, wear and intermediate medium into account

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A solution of the plane wear-contact problem with friction for a periodic system of cylindrical punches and elastic half-space is given. The complex (two-component) type of sliding of the punches and an intermediate medium under pressure are allowed. The problem is reduced to the canonical singular integral equation on a circular arc in the complex plane with known solution. A numerical analysis of the effects of the load–speed regime parameters on the tribological characteristics of the considered moveable coupling has been performed.

About the authors

I. A. Soldatenkov

Institute for Problems in Mechanics, Russian Academy of Sciences

Email: iasoldat@hotmail.com
Moscow

References

  1. Sadowsky M. Zweidimensionale Probleme der Elastizitätstheorie // ZAMM — Journal of Applied Mathematics and Mechanics, 1928, vol. 8, no. 2, pp. 107–121. https://doi.org/10.1002/zamm.19280080203
  2. Westergaard H.M. Bearing pressures and cracks // J. of Appl. Mech., Transactions of the ASME, 1939, vol. 6, no. 2, pp. 49–53. https://doi.org/10.1115/1.4008919
  3. Shtaerman I.Y. Contact Problem of the Theory of Elasticity. Moscow–Leningrad: Gostekhizdat, 1949. 270 p. (in Russian)
  4. Galin L.A. Mixed problems of the theory of elasticity with friction forces for a half-plane // Doklady Akademii Nauk SSSR, 1943, vol. 39, no. 3, pp. 88–93. (in Russian)
  5. Block J.M., Keer L.M. Periodic contact problems in plane elasticity // J. of Mech. Mater.&Struct., 2008, vol. 3, no. 7, pp. 1207–1237. https://doi.org/10.2140/jomms.2008.3.1207
  6. Goryacheva I.G., Tsukanov I.Yu. Development of discrete contact mechanics with applications to study the frictional interaction of deformable bodies // Mech. Solids, 2020, vol. 55, no. 8, pp. 1441–1462. https://doi.org/10.3103/S0025654420080099
  7. Pozharskii D.A. Periodic contact and mixed problems of the elasticity theory (review) // Bulletin of Higher Educational Institutions. North Caucasus Region. Natural Science, 2021. No. 2, pp. 22–33. (in Russian) https://doi.org/10.18522/1026-2237-2021-2-22-33
  8. Kuznetsov Ye.A. Effect of fluid lubricant on the contact characteristics of rough elastic bodies in compression // Wear, 1985, vol. 102, no. 3, pp. 177–194. https://doi.org/10.1016/0043-1648(85)90217-0
  9. Kozachok O., Martynyak R. Contact problem for wavy surfaces in the presence of an incompressible liquid and a gas in interface gaps // Mathematics and Mechanics of Solids, 2018, vol. 24, no. 11, pp. 3381–3393. https://doi.org/10.1177/1081286518781679
  10. Shvarts A.G., Yastrebov V.A. Fluid flow across a wavy channel brought in contact // Tribology International, 2018, vol. 126, pp. 116–126. https://doi.org/10.1016/j.triboint.2018.05.005
  11. Soldatenkov I.A. The periodic contact problem of the plane theory of elasticity. Taking friction, wear and adhesion into account // Journal of Appl. Mathematics and Mechanics, 2013, vol. 77, no. 2, pp. 245–255. http://dx.doi.org/10.1016/j.jappmathmech.2013.07.017
  12. Kragelskii I.V., Dobychin M.N. and Kombalov V.S. Friction and Wear: Calculation Methods. Oxford: Pergamon, 1982.
  13. Ishlinskii A.Yu. Rolling friction // PMM, 1938, vol. 2, no. 2, pp. 245–260. (in Russian)
  14. Soldatenkov I.A. Problem of wear of a half-plane by a counteracting disk // Mechanics of Solids, 1989, vol. 24, no. 6, pp. 107–110.
  15. Hahn H.G. Elastizitätstheorie: Grundlagen der linearen Theorie und Anwendungen auf eindimensionale, ebene und räumliche Probleme. Leipzig: Vieweg+Teubner Verlag, 2013. 340 p. https://doi.org/10.1007/978-3-663-09894-2
  16. Galin L.A. Contact Problems: The Legacy of L. A. Galin. Berlin: Springer, 2008.
  17. Soldatenkov I.A. Wear Contact Problem with Applications to Engineering Calculation of Wear. Moscow: Fizmatkniga, 2010. (in Russian)
  18. Muskhelishvili N.I. Singular integral equations. Boundary problems of function theory and their application to mathematical physics. New York: Dover Publications, 1992.
  19. Sidorov Yu.V., Fedoryuk M.V., Shabunin M.I. Lectures on the Theory of Functions of a Complex Variable. Moscow: Mir, 1985.
  20. Comninou M., Dundurs J. Elastic Interface Waves Involving Separation // J. of Appl. Mechanics, Transactions of the ASME, 1977, vol. 44, no. 2, pp. 222–226. https://doi.org/10.1115/1.3424028
  21. Friction, Wear and Lubrication: Handbook in 2 vols. Vol. 2 / Ed. by. Moscow: Mashinostroenie, 1979. 358 p. (in Russian)
  22. Physical Quantities: Handbook / Ed. by . Moscow: Energoatomizdat, 1991. 1232 p. (in Russian)
  23. Properties and Behavior of Polymers / Ed. by J. Bailey. New Jersey: John Wiley & Sons, 2011.
  24. Mofidi M., Prakash B., Persson B.N.J. et al. Rubber friction on (apparently) smooth lubricated surfaces // J. of Physics: Condensed Matter, 2008, vol. 20, no. 8, pp. 085223. https://doi.org/10.1088/0953-8984/20/8/085223
  25. Pérez-Ràfols F., Larsson R., Almqvist A. Modelling of leakage on metal-to-metal seals // Tribology International, 2016, vol. 94, pp. 421–427. https://doi.org/10.1016/j.triboint.2015.10.003
  26. Persson B.N.J., Yang C. Theory of the leak-rate of seals // J. of Physics: Condensed Matter, 2008, vol. 20, no. 31, pp. 315011. https://doi.org/10.1088/0953-8984/20/31/315011
  27. Soldatenkov I.A. The model of friction and wear of the elastic coating against a wavy punch under vibrations // Journal of Friction and Wear, 2018, vol. 39, no. 4, pp. 280–288. https://doi.org/10.3103/S1068366618040153

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).