Integral rational syzygies in the system of hemitropic invariants for two asymmetric second rank tensors. Examples
- Authors: Murashkin E.V.1, Radayev Y.N.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics RAS
- Issue: Vol 89, No 6 (2025)
- Pages: 959-970
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/364148
- DOI: https://doi.org/10.7868/S3034575825060068
- ID: 364148
Cite item
Abstract
About the authors
E. V. Murashkin
Ishlinsky Institute for Problems in Mechanics RAS
Email: murashkin@ipmnet.ru
Moscow
Yu. N. Radayev
Ishlinsky Institute for Problems in Mechanics RAS
Email: radayev@ipmnet.ru
Moscow
References
- Cosserat E.M.P., Cosserat F. Théorie des corps déformables. Paris: A. Hermann et fils, 1909.
- Gunther W. Zur statik und kinematik des cosseratschen kontinuums. Abh. Braunschweig. Wiss. Ges, 10:195-213, 1958.
- Kessel S. Lineare elastizitätstheorie des anisotropen cosserat-kontinuums // Abhandlungen der Braunschweig. Wiss. Ges. 1964. V. 16. P. 1–22.
- Neuber H. On the general solution of linear-elastic problems in isotropic and anisotropic cosserat continua // Applied Mechanics, 1966, pp. 153–158. https://doi.org/10.1007/978-3-662-29364-5_16
- Neuber H. Über probleme der spannungskonzentration im cosserat-körper // Acta Mechanica, 1966, vol. 2, pp. 48–69. https://doi.org/10.1007/BF01176729
- Neuber H. On the effect of stress concentration in cosserat continua // Mechanics of Generalized Continua, 1968, pp. 109–113. https://doi.org/10.1007/978-3-662-30257-6_13
- Nowacki W. Theory of micropolar elasticity. Berlin: Springer, 1972.
- Besdo D. A contribution to the nonlinear theory of the cosserat-continuum // Acta Mechanica, 1974, vol. 20, pp. 105–131.
- Dyszlewicz J. Micropolar Theory of Elasticity. Lecture Notes in Applied and Computational Mechanics. Berlin: Springer Science & Business Media, 1986. https://doi.org/10.1007/978-3-540-45286-7
- Nowacki W. Theory of Asymmetric ElasticitY.N.-Y.: Pergamon Press, 1986.
- Radayev Y.N., Murashkin E.V. Pseudotensor formulation of the mechanics of hemitropic micropolar media // Probl. Prochn. Plastich., 2020, vol. 82, no. 4, pp. 399–412. https://doi.org/10.32326/1814-9146-2020-82-4-399-412
- Radaev Y.N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2018, vol. 22, no. 3, pp. 504–517. http://dx.doi.org/10.14498/vsgtu1635
- Gurevich G.B. Foundations of the Theory of Algebraic. Groningen: Noordhoff, 1964.
- Spencer A.M.J. Theory of Invariant. Moscow: Mir, 1974. (in Russian)
- Sushkevich A.K. Fundamentals of Higher Algebra. Moscow: ONTI, GRTTL, 1937. (in Russian)
- Smith G.F. On isotropic integrity bases // Arch. Rational Mech. Anal., 1965, vol. 18, pp. 282-292. https://doi.org/10.1007/BF00251667
- Spencer A.J.M., Rivlin RS Isotropic integrity bases for vectors and second-order tensors. Part I // Archive for rational mechanics and analysis, 1962, vol. 9, pp. 45–63. https://doi.org/10.1007/BF00253332
- Spencer A.J.M. Isotropic integrity bases for vectors and second-order tensors. Part II // Archive for rational mechanics and analysis, 1965, vol. 18, pp. 51–82. https://doi.org/10.1007/BF00253982
- Zhilin P.A. Rational mechanics of continuous media. St. Petersburg: Izd-vo politekhn. un-ta, 2012. (in Russian)
- Murashkin E.V. On the relationship of micropolar constitutive parameters of thermodynamic state potentials // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva. Ser.: Mekh. Pred. Sost., 2023, vol. 1, no. 55, pp. 110–121. https://doi.org/10.37972/chgpu.2023.55.1.012
- Murashkin E.V., Radayev Y.N. On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva. Ser.: Mekh. Pred. Sost., 2022, vol. 3, no. 53, pp. 86–100. https://doi.org/10.37972/chgpu.2022.53.3.010
- Murashkin E.V., Radaev Y.N. Coupled thermoelasticity of hemitropic media. pseudotensor formulation // Mechanics of Solids, 2023, vol. 58, no. 3, pp. 802–813. https://doi.org/10.3103/S0025654423700127
- Murashkin E.V., Radayev Y.N. Generalization of the algebraic Hamilton–Cayley theory // Mechanics of Solids, 2021, vol. 56, no. 6, pp. 996–1003. https://doi.org/10.3103/S0025654421060145
- Murashkin E.V., Radayev Y.N. On quadratic corrections of constitutive equations for a hemitropic micropolar elastic solid // J. of Samara St. Tech. Univ. Ser. Phys.&Math. Sci, 2025, vol. 29, no. 2, pp. 207–219. https://doi.org/10.14498/vsgtu2144
- Murashkin E.V., Radayev Y.N. A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity // Lobachevskii J. Math., 2023, vol. 44, no. 6, pp. 2440–2449. https://doi.org/10.1134/S1995080223060392
- Murashkin E.V., Radayev Y.N. On algebraic triple weights formulation of micropolar thermoelasticity // Mechanics of Solids, 2024, vol. 59, no. 1, pp. 555–580. https://doi.org/10.1134/s0025654424700274
- Murashkin E.V., Radayev Y.N. Theory of poisson's ratio for a thermoelastic micropolar acentric isotropic solid // Lobachevskii J. of Math., 2024, vol. 45, no. 5, pp. 2378–2390. https://doi.org/10.1134/s1995080224602480
- Murashkin E.V., Radayev Y.N. Cubic approximation of stress potential for a hemitropic micropolar elastic solid // Lobachevskii J. of Math., 2025, vol. 46, no. 5, pp. 2391–2400. https://doi.org/10.1134/S1995080225606514
- McConnell A.J. Application of Tensor Analysis. New York: Dover Publ., 1957.
- Schouten J.A. Tensor Analysis for Physicist. Oxford: Clarendon Press, 1965.
- Sokolnikoff I. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. New York: John Wiley & Sons Inc., 1964.
- Synge J.L., Schild A. Tensor calculus. Toronto: Toronto University Press, 1949.
- Rozenfeld B.A. Multidimensional Spaces. Moscow: Nauka, 1966. (in Russian)
- Radayev Y.N. Tensors with constant components in the constitutive equations of a hemitropic micropolar solids// Mechanics of Solids, 2023, vol. 58, no. 5, pp. 1517–1527. https://doi.org/10.3103/S0025654423700206
- Murashkin E.V., Radayev Y.N. On a micropolar theory of growing solids // J. of Samara St. Tech. Univ. Ser. Phys.&Math Sci., 2020, vol. 24, no. 3, pp. 424–444. http://dx.doi.org/10.14498/vsgtu1792
Supplementary files


