Integral rational syzygies in the system of hemitropic invariants for two asymmetric second rank tensors. Examples

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In present paper, the systems of entire rational hemitropic invariants for two asymmetric second-rank tensors in three-dimensional space are discussed and examples of rational syzygies for individual invariants are considered. The notion of a pseudo-invariant of a given algebraic weight for a pseudo-affinor are recalled. A generalization of the Hamilton–Cayley theorem for pseudo-affinors are revisited. The two equivalent systems of pseudo-invariants: the (S)-system and the (I)-system are introduced and employed. The Newton and Waring formulae for relations between these systems are discussed. A complete set of 86 irreducible absolute invariants for two symmetric and two antisymmetric affinors are represented. For individual invariants, the examples of integral rational syzygies are considered. The examples of syzygies are chosen to demonstrate the difference between correct and incorrect, regular and irregular syzygies.

About the authors

E. V. Murashkin

Ishlinsky Institute for Problems in Mechanics RAS

Email: murashkin@ipmnet.ru
Moscow

Yu. N. Radayev

Ishlinsky Institute for Problems in Mechanics RAS

Email: radayev@ipmnet.ru
Moscow

References

  1. Cosserat E.M.P., Cosserat F. Théorie des corps déformables. Paris: A. Hermann et fils, 1909.
  2. Gunther W. Zur statik und kinematik des cosseratschen kontinuums. Abh. Braunschweig. Wiss. Ges, 10:195-213, 1958.
  3. Kessel S. Lineare elastizitätstheorie des anisotropen cosserat-kontinuums // Abhandlungen der Braunschweig. Wiss. Ges. 1964. V. 16. P. 1–22.
  4. Neuber H. On the general solution of linear-elastic problems in isotropic and anisotropic cosserat continua // Applied Mechanics, 1966, pp. 153–158. https://doi.org/10.1007/978-3-662-29364-5_16
  5. Neuber H. Über probleme der spannungskonzentration im cosserat-körper // Acta Mechanica, 1966, vol. 2, pp. 48–69. https://doi.org/10.1007/BF01176729
  6. Neuber H. On the effect of stress concentration in cosserat continua // Mechanics of Generalized Continua, 1968, pp. 109–113. https://doi.org/10.1007/978-3-662-30257-6_13
  7. Nowacki W. Theory of micropolar elasticity. Berlin: Springer, 1972.
  8. Besdo D. A contribution to the nonlinear theory of the cosserat-continuum // Acta Mechanica, 1974, vol. 20, pp. 105–131.
  9. Dyszlewicz J. Micropolar Theory of Elasticity. Lecture Notes in Applied and Computational Mechanics. Berlin: Springer Science & Business Media, 1986. https://doi.org/10.1007/978-3-540-45286-7
  10. Nowacki W. Theory of Asymmetric ElasticitY.N.-Y.: Pergamon Press, 1986.
  11. Radayev Y.N., Murashkin E.V. Pseudotensor formulation of the mechanics of hemitropic micropolar media // Probl. Prochn. Plastich., 2020, vol. 82, no. 4, pp. 399–412. https://doi.org/10.32326/1814-9146-2020-82-4-399-412
  12. Radaev Y.N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2018, vol. 22, no. 3, pp. 504–517. http://dx.doi.org/10.14498/vsgtu1635
  13. Gurevich G.B. Foundations of the Theory of Algebraic. Groningen: Noordhoff, 1964.
  14. Spencer A.M.J. Theory of Invariant. Moscow: Mir, 1974. (in Russian)
  15. Sushkevich A.K. Fundamentals of Higher Algebra. Moscow: ONTI, GRTTL, 1937. (in Russian)
  16. Smith G.F. On isotropic integrity bases // Arch. Rational Mech. Anal., 1965, vol. 18, pp. 282-292. https://doi.org/10.1007/BF00251667
  17. Spencer A.J.M., Rivlin RS Isotropic integrity bases for vectors and second-order tensors. Part I // Archive for rational mechanics and analysis, 1962, vol. 9, pp. 45–63. https://doi.org/10.1007/BF00253332
  18. Spencer A.J.M. Isotropic integrity bases for vectors and second-order tensors. Part II // Archive for rational mechanics and analysis, 1965, vol. 18, pp. 51–82. https://doi.org/10.1007/BF00253982
  19. Zhilin P.A. Rational mechanics of continuous media. St. Petersburg: Izd-vo politekhn. un-ta, 2012. (in Russian)
  20. Murashkin E.V. On the relationship of micropolar constitutive parameters of thermodynamic state potentials // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva. Ser.: Mekh. Pred. Sost., 2023, vol. 1, no. 55, pp. 110–121. https://doi.org/10.37972/chgpu.2023.55.1.012
  21. Murashkin E.V., Radayev Y.N. On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva. Ser.: Mekh. Pred. Sost., 2022, vol. 3, no. 53, pp. 86–100. https://doi.org/10.37972/chgpu.2022.53.3.010
  22. Murashkin E.V., Radaev Y.N. Coupled thermoelasticity of hemitropic media. pseudotensor formulation // Mechanics of Solids, 2023, vol. 58, no. 3, pp. 802–813. https://doi.org/10.3103/S0025654423700127
  23. Murashkin E.V., Radayev Y.N. Generalization of the algebraic Hamilton–Cayley theory // Mechanics of Solids, 2021, vol. 56, no. 6, pp. 996–1003. https://doi.org/10.3103/S0025654421060145
  24. Murashkin E.V., Radayev Y.N. On quadratic corrections of constitutive equations for a hemitropic micropolar elastic solid // J. of Samara St. Tech. Univ. Ser. Phys.&Math. Sci, 2025, vol. 29, no. 2, pp. 207–219. https://doi.org/10.14498/vsgtu2144
  25. Murashkin E.V., Radayev Y.N. A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity // Lobachevskii J. Math., 2023, vol. 44, no. 6, pp. 2440–2449. https://doi.org/10.1134/S1995080223060392
  26. Murashkin E.V., Radayev Y.N. On algebraic triple weights formulation of micropolar thermoelasticity // Mechanics of Solids, 2024, vol. 59, no. 1, pp. 555–580. https://doi.org/10.1134/s0025654424700274
  27. Murashkin E.V., Radayev Y.N. Theory of poisson's ratio for a thermoelastic micropolar acentric isotropic solid // Lobachevskii J. of Math., 2024, vol. 45, no. 5, pp. 2378–2390. https://doi.org/10.1134/s1995080224602480
  28. Murashkin E.V., Radayev Y.N. Cubic approximation of stress potential for a hemitropic micropolar elastic solid // Lobachevskii J. of Math., 2025, vol. 46, no. 5, pp. 2391–2400. https://doi.org/10.1134/S1995080225606514
  29. McConnell A.J. Application of Tensor Analysis. New York: Dover Publ., 1957.
  30. Schouten J.A. Tensor Analysis for Physicist. Oxford: Clarendon Press, 1965.
  31. Sokolnikoff I. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. New York: John Wiley & Sons Inc., 1964.
  32. Synge J.L., Schild A. Tensor calculus. Toronto: Toronto University Press, 1949.
  33. Rozenfeld B.A. Multidimensional Spaces. Moscow: Nauka, 1966. (in Russian)
  34. Radayev Y.N. Tensors with constant components in the constitutive equations of a hemitropic micropolar solids// Mechanics of Solids, 2023, vol. 58, no. 5, pp. 1517–1527. https://doi.org/10.3103/S0025654423700206
  35. Murashkin E.V., Radayev Y.N. On a micropolar theory of growing solids // J. of Samara St. Tech. Univ. Ser. Phys.&Math Sci., 2020, vol. 24, no. 3, pp. 424–444. http://dx.doi.org/10.14498/vsgtu1792

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).