Integral rational syzygies in the system of hemitropic invariants for two asymmetric second rank tensors. Examples
- Authors: Murashkin E.V.1, Radayev Y.N.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics RAS
- Issue: Vol 89, No 6 (2025)
- Pages: 959-970
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/364148
- DOI: https://doi.org/10.7868/S3034575825060068
- ID: 364148
Cite item
Abstract
In present paper, the systems of entire rational hemitropic invariants for two asymmetric second-rank tensors in three-dimensional space are discussed and examples of rational syzygies for individual invariants are considered. The notion of a pseudo-invariant of a given algebraic weight for a pseudo-affinor are recalled. A generalization of the Hamilton–Cayley theorem for pseudo-affinors are revisited. The two equivalent systems of pseudo-invariants: the (S)-system and the (I)-system are introduced and employed. The Newton and Waring formulae for relations between these systems are discussed. A complete set of 86 irreducible absolute invariants for two symmetric and two antisymmetric affinors are represented. For individual invariants, the examples of integral rational syzygies are considered. The examples of syzygies are chosen to demonstrate the difference between correct and incorrect, regular and irregular syzygies.
About the authors
E. V. Murashkin
Ishlinsky Institute for Problems in Mechanics RAS
Email: murashkin@ipmnet.ru
Moscow
Yu. N. Radayev
Ishlinsky Institute for Problems in Mechanics RAS
Email: radayev@ipmnet.ru
Moscow
References
- Cosserat E.M.P., Cosserat F. Théorie des corps déformables. Paris: A. Hermann et fils, 1909.
- Gunther W. Zur statik und kinematik des cosseratschen kontinuums. Abh. Braunschweig. Wiss. Ges, 10:195-213, 1958.
- Kessel S. Lineare elastizitätstheorie des anisotropen cosserat-kontinuums // Abhandlungen der Braunschweig. Wiss. Ges. 1964. V. 16. P. 1–22.
- Neuber H. On the general solution of linear-elastic problems in isotropic and anisotropic cosserat continua // Applied Mechanics, 1966, pp. 153–158. https://doi.org/10.1007/978-3-662-29364-5_16
- Neuber H. Über probleme der spannungskonzentration im cosserat-körper // Acta Mechanica, 1966, vol. 2, pp. 48–69. https://doi.org/10.1007/BF01176729
- Neuber H. On the effect of stress concentration in cosserat continua // Mechanics of Generalized Continua, 1968, pp. 109–113. https://doi.org/10.1007/978-3-662-30257-6_13
- Nowacki W. Theory of micropolar elasticity. Berlin: Springer, 1972.
- Besdo D. A contribution to the nonlinear theory of the cosserat-continuum // Acta Mechanica, 1974, vol. 20, pp. 105–131.
- Dyszlewicz J. Micropolar Theory of Elasticity. Lecture Notes in Applied and Computational Mechanics. Berlin: Springer Science & Business Media, 1986. https://doi.org/10.1007/978-3-540-45286-7
- Nowacki W. Theory of Asymmetric ElasticitY.N.-Y.: Pergamon Press, 1986.
- Radayev Y.N., Murashkin E.V. Pseudotensor formulation of the mechanics of hemitropic micropolar media // Probl. Prochn. Plastich., 2020, vol. 82, no. 4, pp. 399–412. https://doi.org/10.32326/1814-9146-2020-82-4-399-412
- Radaev Y.N. The Lagrange multipliers method in covariant formulations of micropolar continuum mechanics theories // Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 2018, vol. 22, no. 3, pp. 504–517. http://dx.doi.org/10.14498/vsgtu1635
- Gurevich G.B. Foundations of the Theory of Algebraic. Groningen: Noordhoff, 1964.
- Spencer A.M.J. Theory of Invariant. Moscow: Mir, 1974. (in Russian)
- Sushkevich A.K. Fundamentals of Higher Algebra. Moscow: ONTI, GRTTL, 1937. (in Russian)
- Smith G.F. On isotropic integrity bases // Arch. Rational Mech. Anal., 1965, vol. 18, pp. 282-292. https://doi.org/10.1007/BF00251667
- Spencer A.J.M., Rivlin RS Isotropic integrity bases for vectors and second-order tensors. Part I // Archive for rational mechanics and analysis, 1962, vol. 9, pp. 45–63. https://doi.org/10.1007/BF00253332
- Spencer A.J.M. Isotropic integrity bases for vectors and second-order tensors. Part II // Archive for rational mechanics and analysis, 1965, vol. 18, pp. 51–82. https://doi.org/10.1007/BF00253982
- Zhilin P.A. Rational mechanics of continuous media. St. Petersburg: Izd-vo politekhn. un-ta, 2012. (in Russian)
- Murashkin E.V. On the relationship of micropolar constitutive parameters of thermodynamic state potentials // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva. Ser.: Mekh. Pred. Sost., 2023, vol. 1, no. 55, pp. 110–121. https://doi.org/10.37972/chgpu.2023.55.1.012
- Murashkin E.V., Radayev Y.N. On two base natural forms of asymmetric force and couple stress tensors of potential in mechanics of hemitropic solids // Vestn. Chuvash. Gos. Ped. Univ. Im. I. Ya. Yakovleva. Ser.: Mekh. Pred. Sost., 2022, vol. 3, no. 53, pp. 86–100. https://doi.org/10.37972/chgpu.2022.53.3.010
- Murashkin E.V., Radaev Y.N. Coupled thermoelasticity of hemitropic media. pseudotensor formulation // Mechanics of Solids, 2023, vol. 58, no. 3, pp. 802–813. https://doi.org/10.3103/S0025654423700127
- Murashkin E.V., Radayev Y.N. Generalization of the algebraic Hamilton–Cayley theory // Mechanics of Solids, 2021, vol. 56, no. 6, pp. 996–1003. https://doi.org/10.3103/S0025654421060145
- Murashkin E.V., Radayev Y.N. On quadratic corrections of constitutive equations for a hemitropic micropolar elastic solid // J. of Samara St. Tech. Univ. Ser. Phys.&Math. Sci, 2025, vol. 29, no. 2, pp. 207–219. https://doi.org/10.14498/vsgtu2144
- Murashkin E.V., Radayev Y.N. A negative weight pseudotensor formulation of coupled hemitropic thermoelasticity // Lobachevskii J. Math., 2023, vol. 44, no. 6, pp. 2440–2449. https://doi.org/10.1134/S1995080223060392
- Murashkin E.V., Radayev Y.N. On algebraic triple weights formulation of micropolar thermoelasticity // Mechanics of Solids, 2024, vol. 59, no. 1, pp. 555–580. https://doi.org/10.1134/s0025654424700274
- Murashkin E.V., Radayev Y.N. Theory of poisson's ratio for a thermoelastic micropolar acentric isotropic solid // Lobachevskii J. of Math., 2024, vol. 45, no. 5, pp. 2378–2390. https://doi.org/10.1134/s1995080224602480
- Murashkin E.V., Radayev Y.N. Cubic approximation of stress potential for a hemitropic micropolar elastic solid // Lobachevskii J. of Math., 2025, vol. 46, no. 5, pp. 2391–2400. https://doi.org/10.1134/S1995080225606514
- McConnell A.J. Application of Tensor Analysis. New York: Dover Publ., 1957.
- Schouten J.A. Tensor Analysis for Physicist. Oxford: Clarendon Press, 1965.
- Sokolnikoff I. Tensor Analysis: Theory and Applications to Geometry and Mechanics of Continua. New York: John Wiley & Sons Inc., 1964.
- Synge J.L., Schild A. Tensor calculus. Toronto: Toronto University Press, 1949.
- Rozenfeld B.A. Multidimensional Spaces. Moscow: Nauka, 1966. (in Russian)
- Radayev Y.N. Tensors with constant components in the constitutive equations of a hemitropic micropolar solids// Mechanics of Solids, 2023, vol. 58, no. 5, pp. 1517–1527. https://doi.org/10.3103/S0025654423700206
- Murashkin E.V., Radayev Y.N. On a micropolar theory of growing solids // J. of Samara St. Tech. Univ. Ser. Phys.&Math Sci., 2020, vol. 24, no. 3, pp. 424–444. http://dx.doi.org/10.14498/vsgtu1792
Supplementary files


