Analysis of acoustic waves in periodic functionally graded rods using the cauchy formalism method
- Authors: Saiyan S.G.1,2, Kuznetsov S.V.1,2
-
Affiliations:
- National Research Moscow State University of Civil Engineering (NRU MGSU)
- Ishlinsky Institute for Problems in Mechanics RAS
- Issue: Vol 89, No 6 (2025)
- Pages: 943-958
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/364147
- DOI: https://doi.org/10.7868/S3034575825060051
- ID: 364147
Cite item
Abstract
This study investigates acoustic waves in one-dimensional periodic functionally graded rods using a modified Cauchy formalism previously applied to analyze the dispersion of surface acoustic waves in layered media. During the propagation of harmonic waves in a semi-infinite rod with harmonic periodicity of acoustic properties, phenomena were observed, including non-periodic spatial variation of the wave's phase velocity and amplitude, along with spatially periodic changes in kinetic energy and strain energy.
About the authors
S. G. Saiyan
National Research Moscow State University of Civil Engineering (NRU MGSU); Ishlinsky Institute for Problems in Mechanics RAS
Author for correspondence.
Email: Berformert@gmail.com
Moscow
S. V. Kuznetsov
National Research Moscow State University of Civil Engineering (NRU MGSU); Ishlinsky Institute for Problems in Mechanics RAS
Email: Berformert@gmail.com
Moscow
References
- Miyamoto Y., Koizumi M., Yamada O. High-pressure self-combustion sintering for ceramics // J. Am. Ceramic Soc., 1984, vol. 67, no. 11, pp. 224–225. http://dx.doi.org/10.1111/j.1151-2916.1984.tb19488.x
- Gupta A., Talha M. Recent development in modeling and analysis of functionally graded materials and structures // Progress Aerospace Sci., 2015, vol. 79, no. 3, pp. 1–14. http://dx.doi.org/10.1016/j.paerosci.2015.07.001i
- Li Z., Yu J., Zhang X. et al. Guided wave propagation in functionally graded fractional viscoelastic plates: A quadrature-free Legendre polynomial method // Mech. Adv. Mater. Struct., 2020, vol. 29, no. 16, pp. 1–21. http://dx.doi.org/10.1080/15376494.2020.1860273
- Hutmacher D.W., Sittinger M., Risbud M.V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems // Trends Biotech, 2004, vol. 22, no. 7, pp. 354–362. http://dx.doi.org/10.1016/j.tibtech.2004.05.005
- Zhang X., Zhang C., Yu J. et al. Full dispersion and characteristics of complex guided waves in functionally graded piezoelectric plates // J. Intell. Mater. Syst. Struct., 2019, no. 10, vol. 30, pp. 1466–1480. http://dx.doi.org/10.1177/1045389X19836168
- Parhizkar Y., Ghannad M. Electro-elastic analysis of functionally graded piezoelectric variable thickness cylindrical shells using a first-order electric potential theory and perturbation technique // J. Intell. Mater. Syst. Struct., 2020, vol. 31, no. 17, pp. 2044–2068. http://dx.doi.org/10.1177/1045389X20935627
- Safari-Kahnaki A., Hosseini S.M., Tahani M. Thermal shock analysis and thermo-elastic stress waves in functionally graded thick hollow cylinders using analytical method // Int. J. Mech. Mater. Design, 2011, vol. 7, no. 3, pp. 167–184. http://dx.doi.org/10.1007/s10999-011-9157-3
- Wu B., Su Y.P., Liu D.Y. et al. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders // J. Sound Vibr., 2018, vol. 412, pp. 17–47. http://dx.doi.org/10.48550/arXiv.2107.11121
- Naila S., Ghazala A. Solitary dynamics of longitudinal wave equation arises in magneto-electro-elastic circular rod // Modern Phys. Let. B., 2021, vol. 35, no. 5, pp. 2150086. http://dx.doi.org/10.1142/S021798492150086X
- Kuznetsov S.V. Cauchy formalism for Lamb waves in functionally graded plates // J. Vibr. Control, 2019, vol. 25, no. 6, pp. 1227–1232. http://dx.doi.org/10.1177/1077546318815376
- Kuznetsov S.V. Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence // Waves Random Complex Media, 2021, vol. 31, no. 6, pp. 1540–1549. http://dx.doi.org/10.1080/17455030.2019.1683257
- Auld B.A. Acoustic Fields and Waves in Solids. Vol. 2. 2nd ed. Malabar, Florida: Krieger Publishing Company, 1990. 421 p.
- Royer D., Dieulesaint E. Elastic Waves in Solids. Vol. I. New York: Springer-Verlag, 2000. 374 p.
- Djeran-Maigre I., Kuznetsov S.V. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates // Acoust. Phys., 2014, vol. 60, no. 2, pp. 200–207. http://dx.doi.org/10.1134/S106377101402002X
- Ilyashenko A.V., Kuznetsov S.V. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech., 2018, vol. 88, no. 8, pp. 1385–1394. https://link.springer.com/article/10.1007/s00419-018-1377-7
- Quek S.T., Wang Q. On dispersion relations in piezoelectric coupled plate structures // Smart Mater. Struc., 2000, vol. 9, no. 6, pp. 859–867. http://dx.doi.org/10.1088/0964-1726/9/6/317
- Wang Q., Varadan V.K. Longitudinal wave propagation in piezoelectric coupled rods // Smart Mater. Struc., 2002, vol. 11, no. 1, pp. 48–54. http://dx.doi.org/10.1088/0964-1726/11/1/305
- Han X., Liu G.R., Xi Z.C. et al. Characteristics of waves in a functionally graded cylinder // Int. J. Num. Meth. Eng., 2002, vol. 53, no. 3, pp. 653–676. http://dx.doi.org/10.1002/nme.305
- Shuvalov A. A sextic formalism for three-dimensional elastodynamics of cylindrically anisotropic radially inhomogeneous materials // Proc. Royal Soc. London. Ser. A., 2003, vol. 459, no. 2035, pp. 1611–1639. http://dx.doi.org/10.1098/rspa.2002.1075
- Elmaimouni L., Lefebvre J.E., Zhang V. et al. Guided waves in radially graded cylinders: a polynomial approach // NDT & E Int., 2005, vol. 38, no. 5, pp. 344–353. http://dx.doi.org/10.1016/j.ndteint.2004.10.004
- Elmaimouni L., Lefebvre J.E., Raherison A. et al. Acoustical guided waves in inhomogeneous cylindrical materials // Ferroelectrics, 2010, vol. 372, no. 1, pp. 115–123. http://dx.doi.org/10.1080/00150190802382074
- Yu J.G., Wu B. Circumferential wave in magneto-electro-elastic functionally graded cylindrical curved plates // Europ. J. Mech. Ser. A/Solids, 2009, vol. 28, no. 3, pp. 560–568. http://dx.doi.org/10.1016/j.euromechsol.2008.07.011
- Baron C., Naili S. Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization // J. Acoust. Soc. Am., 2010, vol. 127, pp. 1307–1317. http://dx.doi.org/10.1121/1.3292949
- Chan Zh.L., Chen W.Q. Torsional wave propagation in a circumferentially poled piezoelectric cylindrical transducer with unattached electrodes // IEEE Trans. Ultrasonics Ferroelectrics Freq. Control, 2010, vol. 57, pp. 1230–1236. http://dx.doi.org/10.1109/TUFFC.2010.1536
- Baron C. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum // Ultrasonics, 2011, vol. 51, no. 2, pp. 123–130. http://dx.doi.org/10.1016/j.ultras.2010.07.001
- Xue C.X., Pan E., Zhang S.Y. Solitary waves in a magneto-electro-elastic circular rod // Smart Materials and Structures, 2011, vol. 20, no. 10, pp. 105010. http://dx.doi.org/10.1088/0964-1726/20/10/105010
- Xue C.-X., Pan E. On the longitudinal wave along a functionally graded magneto-electro-elastic rod // Int. J. Eng. Sci., 2013, vol. 62, pp. 48–55. http://dx.doi.org/10.1016/j.ijengsci.2012.08.004
- Zarezadeh E., Hosseini V., Hadi A. Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory // Mech. Based Design Struct. Mach., 2019, vol. 48, no. 4, pp. 1–16. http://dx.doi.org/10.1080/15397734.2019.1642766
- Mirsky I. Wave propagation in transversely isotropic circular cylinders, part I: theory // J. Acoust. Soc. Am., 1965, vol. 37, pp. 1016–1026. http://dx.doi.org/10.1121/1.1909508
- Nelson F., Dong S., Kalkra R. Vibrations and waves in laminated orthotropic circular cylinders // J. Sound Vibr., 1971, vol. 18, pp. 429–444. http://dx.doi.org/10.1016/0022-460X(71)90714-0
- Honarvar F., Enjilela E., Sinclair A. et al. Wave propagation in transversely isotropic cylinders // Int. J. Solids and Struct., 2007, vol. 44, pp. 5236–5246. http://dx.doi.org/10.1016/j.ijsolstr.2006.12.029
- Mindlin R.D., McNiven H.D. Axially symmetric waves in elastic rods // Trans. ASME. J. Appl. Mech., 1960, vol. 27, pp. 145–151. http://dx.doi.org/10.1115/1.3643889
- Kolsky H. Stress Waves in Solids. 2nd ed. Dover Publ.: N.-Y., 2012. 224 p.
- Zemanek J. An experimental and theoretical investigation of elastic wave propagation in a cylinder // J. Acoust. Soc. Am., 1962, vol. 51, pp. 265–283. http://dx.doi.org/10.1121/1.1912838
- Valsamos G., Casadei F., Solomos G. A numerical study of wave dispersion curves in cylindrical rods with circular cross-section // Appl. Comput. Mech., 2013, vol. 7, pp. 99–114.
- Hartman Ph. Ordinary Differential Equations (Classics in Applied Mathematics). 2nd Ed. Philadelphia: SIAM, 1987. 632 p.
- Eastham M.S.P. The Spectral Theory of Periodic Differential Equations. Edinburgh: Scottish Academic Press, 1973. 140 p.
- Brillouin L. Wave Propagation in Periodic Structures. 2nd ed., Dover: N.Y., 1946. 600 p.
- Mead D.J. Free wave propagation in periodically supported, infinite beams // J. Sound Vibr., 1970, vol. 11, pp. 181–197. http://dx.doi.org/10.1016/S0022-460X(70)80062-1
- Kushwaha M., Halevi P., Dobrzynski L. et al. Acoustic band structure of periodic elastic composites // Phys. Rev. Lett., 1993, vol. 71, no. 13, pp. 2022–2025. http://dx.doi.org/10.1103/PhysRevLett.71.2022
- Kushwaha M.S., Halevi P., Martínez G. et al. Theory of acoustic band structure of periodic elastic composites // Phys. Rev. B., 1994, vol. 49, no. 4, pp. 2313–2322. http://dx.doi.org/10.1103/PhysRevB.49.2313
- Mester S.S., Benaroya H. Periodic and near-periodic structures // Shock Vibr., 1995, vol. 2, pp. 69–95. http://dx.doi.org/10.3233/SAV-1995-2107
- Bruck H.A. A one-dimensional model for designing functionally graded materials to manage stress waves // Int. J. Solids Struct., 2000, vol. 37, pp. 6383–6395. http://dx.doi.org/10.1016/S0020-7683(99)00236-X
- Tongele T.N., Chen T. Control of longitudinal wave propagation in conical periodic structures // J. Vib. Control, 2004, vol. 10, pp. 1795–1811. http://dx.doi.org/10.1177/1077546304042532
- Hussein M.I., Leamy M.J., Ruzzene M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook // Appl. Mech. Rev., 2014, vol. 66, pp. 40802. http://dx.doi.org/10.1115/1.4026911
- Morandi F., Miniaci M., Marzani A. et al. Standardised acoustic characterisation of sonic crystals noise barriers: sound insulation and reflection properties // Appl. Acoust., 2016, vol. 114, pp. 294–306. http://dx.doi.org/10.1016/j.apacoust.2016.07.028
- Shmat’ko A.A., Mizernik V.N., Odarenko E.N. Floquet-Bloch waves in magnetophotonic crystals with transverse magnetic field // J. Electromagnetic Waves Appl., 2020, vol. 34, no. 12, pp. 1667–1679. http://dx.doi.org/10.1080/09205071.2020.1780955
- Askes H., Metrikine A.V., Pichugin A.V. et al. Four simplified gradient elasticity models for the simulation of dispersive wave propagation // Phil. Mag., 2008, vol. 88, pp. 3415–3443. http://dx.doi.org/10.1080/14786430802524108
- Butt S.N., Timothy J.J., Meschke G. Wave dispersion and propagation in state-based peridynamics // Comp. Mech., 2017, vol. 60, pp. 725–738. https://link.springer.com/article/10.1007/s00466-017-1439-7
- Guo Z., Wu F., Xue C. et al. Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect // J. Appl. Phys., 2018, vol. 124, pp. 103104. http://dx.doi.org/10.1063/1.5042096
- Silling S.A. Propagation of a stress pulse in a heterogeneous elastic bar // J. Peridyn. Nonlocal Model, 2021, vol. 3, pp. 255–275. http://dx.doi.org/10.1007/s42102-020-00048-5
- Silling S.A. Attenuation of waves in a viscoelastic peridynamic medium // Math. Mech. Solids, 2019, vol. 24, no. 11, pp. 3597–3613. http://dx.doi.org/10.1177/1081286519847241
- Wang L., Xu J., Wang J. Static and dynamic Green’s functions in peridynamics // J. Elast., 2017, vol. 126, pp. 95–125. https://link.springer.com/article/10.1007/s10659-016-9583-4
- Xu X., Foster J.T. Deriving peridynamic influence functions for one-dimensional elastic materials with periodic microstructure // J. Peridyn. Nonlocal Model, 2020, vol. 2, pp. 337–351. https://link.springer.com/article/10.1007/s42102-020-00037-8
- Mikata Y. Analytical solutions of peristatic and peridynamic problems for a ld infinite rod // Int. J. Solids Struct., 2012, vol. 49, pp. 2887–2897. http://dx.doi.org/10.1016/j.ijsolstr.2012.02.012
- Van Pamel A., Sha G., Rokhlin S.I. et al. Finite-element modelling of elastic wave propagation and scattering within heterogeneous media // Proc. Royal Soc. Ser. A. Math., Phys. Eng. Sci., 2017, vol. 473, no. 2197, pp. 20160738. http://dx.doi.org/10.1098/rspa.2016.0738
- Chakraborty A., Gopalakrishnan S. A spectrally formulated finite element for wave propagation analysis in functionally graded beams // Int. J. Solids Struct., 2003, vol. 40, pp. 2421–2448. http://dx.doi.org/10.1016/S0020-7683(03)00029-5
- Wu M.-L., Wu L.-Y., Yang W.-P. et al. Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials // Smart Mater. Struct., 2009, vol. 18, no. 11, pp. 115013. http://dx.doi.org/10.1088/0964-1726/18/11/115013
- Kuznetsov S.V. Forbidden planes for Rayleigh waves // Quart. Appl. Math., 2002, vol. 60, pp. 87–97. http://dx.doi.org/10.1090/qam/1878260
- Kuznetsov S.V. Love waves in layered anisotropic media // J. Appl. Math. Mech., 2006, vol. 70, no. 1, pp. 116–127. http://dx.doi.org/10.1016/j.jappmathmech.2006.03.004
- Ilyashenko A.V., Kuznetsov S. V. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russ. J. Nondestruct. Test., 2017, vol. 53, pp. 243–259. http://dx.doi.org/10.1134/S1061830917040039
- Marcus M., Mink H. A Survey of Matrix Theory and Matrix Inequalities. Revised ed. N.Y.: Dover Publications, 2010. 180 p.
- Carcione J.M., Cavallini F. Forbidden directions for inhomogeneous pure shear waves in dissipative anisotropic media // Geophys., 1995, vol. 60, no. 2., pp. 522–530. http://dx.doi.org/10.1190/1.1443789
- Carcione J.M. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. N.Y.: Elsevier, 2014. 690 p.
- Kuznetsov S.V. Love waves in stratified monoclinic media // Quart. Appl. Math., 2004, vol. 62, pp. 749–766. http://dx.doi.org/10.1090/qam/2104272
- Krylov V.V. New type of vibration dampers utilising the effect of acoustic ‘black holes’ // Acta Acustica united with Acustica, 2004, vol. 90, no. 5, pp. 830–837.
- Li S., Brun M., Djeran-Maigre I. et al. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comp. Geotech., 2019, vol. 109, no. 1, pp. 69–81. http://dx.doi.org/10.1016/j.compgeo.2019.01.019
- Li S., Brun M., Djeran-Maigre I. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Europ. J. Environ. Civil Eng., 2020, vol. 24, no. 14, pp. 2400–2421. http://dx.doi.org/10.1080/19648189.2018.1506826
- Li S., Brun M., Djeran-Maigre I. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comp. Geotech., 2021, vol. 131, pp. 103808. http://dx.doi.org/10.1016/j.compgeo.2020.103808
- Dudchenko A.V., Dias D., Kuznetsov S. V. Vertical wave barriers for vibration reduction // Arch. Appl. Mech., 2021, vol. 91, pp. 257–276. http://dx.doi.org/10.1007/s00419-020-01768-2
- Gavrilov S.N., Herman G.C. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading // J. Sound Vib., 2012, vol. 331, no. 20, pp. 4464–4480. http://dx.doi.org/10.1016/j.jsv.2012.05.022
- Kaplunov J., Prikazchikov D. A., Prikazchikova L. A. et al. The lowest vibration spectra of multi-component structures with contrast material properties // J. Sound Vibr., 2019, vol. 445, pp. 132–147. http://dx.doi.org/10.1016/j.jsv.2019.01.013
Supplementary files


