Анализ акустических волн в периодических функционально-градиентных стержнях методом формализма Коши
- Авторы: Саиян С.Г.1,2, Кузнецов С.В.1,2
-
Учреждения:
- Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ)
- Институт Проблем Механики им. А.Ю. Ишлинского РАН
- Выпуск: Том 89, № 6 (2025)
- Страницы: 943-958
- Раздел: Статьи
- URL: https://journals.rcsi.science/0032-8235/article/view/364147
- DOI: https://doi.org/10.7868/S3034575825060051
- ID: 364147
Цитировать
Аннотация
В данной работе исследуются акустические волны в одномерных периодических функционально-градиентных стержнях с использованием модифицированного формализма Коши, ранее примененного для анализа дисперсии поверхностных акустических волн в слоистых средах. При распространении гармонических волн в полу-бесконечном стержне с гармонической периодичностью акустических свойств обнаружены явления, включая непериодическое пространственное изменение дисперсии и амплитуды волны, но при этом пространственно-периодическое изменение кинетической энергии и энергии деформаций.
Об авторах
С. Г. Саиян
Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ); Институт Проблем Механики им. А.Ю. Ишлинского РАН
Автор, ответственный за переписку.
Email: Berformert@gmail.com
Москва
С. В. Кузнецов
Национальный исследовательский Московский государственный строительный университет (НИУ МГСУ); Институт Проблем Механики им. А.Ю. Ишлинского РАН
Email: Berformert@gmail.com
Москва
Список литературы
- Miyamoto Y., Koizumi M., Yamada O. High-pressure self-combustion sintering of ceramics // J. Am. Ceramic Soc. 1984. V. 67. № 11. P. 224–225. http://dx.doi.org/10.1111/j.1151-2916.1984.tb19488.x
- Gupta A., Talha M. Recent development in modeling and analysis of functionally graded materials and structures // Progress Aerospace Sci. 2015. V. 79. № 3. P. 1–14. http://dx.doi.org/10.1016/j.paerosci.2015.07.001i
- Li Z., Yu J., Zhang X. et al. Guided wave propagation in functionally graded fractional viscoelastic plates: A quadrature-free Legendre polynomial method // Mech. Adv. Mater. Struct. V. 29. № 16. 2020. P. 1–21. http://dx.doi.org/10.1080/15376494.2020.1860273
- Hutmacher D.W., Sittinger M., Risbud M.V. Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems // Trends Biotech. 2004. V. 22. № 7. P. 354–362. http://dx.doi.org/10.1016/j.tibtech.2004.05.005
- Zhang X., Zhang C., Yu J. et al. Full dispersion and characteristics of complex guided waves in functionally graded piezoelectric plates // J. Intell. Mater. Syst. Struct. 2019. V. 30. № 10. P. 1466–1480. http://dx.doi.org/10.1177/1045389X19836168
- Parhizkar Y., Ghannad M. Electro-elastic analysis of functionally graded piezoelectric variable thickness cylindrical shells using a first-order electric potential theory and perturbation technique // J. Intell. Mater. Syst. Struct. 2020. V. 31. № 17. P. 2044–2068. http://dx.doi.org/10.1177/1045389X20935627
- Safari-Kahnaki A., Hosseini S.M., Tahani M. Thermal shock analysis and thermo-elastic stress waves in functionally graded thick hollow cylinders using analytical method // Int. J. Mech. Mater. Design. 2011. V. 7. № 3. P. 167–184. http://dx.doi.org/10.1007/s10999-011-9157-3
- Wu B., Su Y.P., Liu D.Y. et al. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders // J. Sound Vibr. 2018. V. 412. P. 17–47. http://dx.doi.org/10.48550/arXiv.2107.11121
- Naila S., Ghazala A. Solitary dynamics of longitudinal wave equation arises in magneto-electro-elastic circular rod // Modern Phys. Let. B. 2021. — V. 35. № 5. P. 2150086. http://dx.doi.org/10.1142/S021798492150086X
- Kuznetsov S.V. Cauchy formalism for Lamb waves in functionally graded plates // J. Vibr. Control. 2019. V. 25. № 6. P. 1227–1232. http://dx.doi.org/10.1177/1077546318815376
- Kuznetsov S.V. Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence // Waves Random Complex Media. 2021. V. 31. № 6. P. 1540–1549. http://dx.doi.org/10.1080/17455030.2019.1683257
- Auld B.A. Acoustic Fields and Waves in Solids. Vol. 2. 2nd ed. Malabar, Florida: Krieger Publishing Company, 1990. 421 p.
- Royer D., Dieulesaint E. Elastic Waves in Solids. Vol. I. New York: Springer-Verlag, 2000. 374 p.
- Djeran-Maigre I., Kuznetsov S.V. Velocities, dispersion, and energy of SH-waves in anisotropic laminated plates // Acoust. Phys. 2014. V. 60. № 2. P. 200–207. http://dx.doi.org/10.1134/S106377101402002X
- Ilyashenko A.V., Kuznetsov S.V. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech. 2018. V. 88. № 8. P. 1385–1394. https://link.springer.com/article/10.1007/s00419-018-1377-7
- Quek S.T., Wang Q. On dispersion relations in piezoelectric coupled plate structures // Smart Mater. Struc. 2000. V. 9. № 6. P. 859–867. http://dx.doi.org/10.1088/0964-1726/9/6/317
- Wang Q., Varadan V.K. Longitudinal wave propagation in piezoelectric coupled rods // Smart Mater. Struc. 2002. V. 11. № 1. P. 48–54. http://dx.doi.org/10.1088/0964-1726/11/1/305
- Han X., Liu G.R., Xi Z.C. et al. Characteristics of waves in a functionally graded cylinder // Int. J. Num. Meth. Eng. 2002. V. 53. P. № 3. P. 653–676. http://dx.doi.org/10.1002/nme.305
- Shuvalov A. A sextic formalism for three-dimensional elastodynamics of cylindrically anisotropic radially inhomogeneous materials // Proc. Royal Soc. London. Ser. A. 2003. V. 459. № 2035, P. 1611–1639. http://dx.doi.org/10.1098/rspa.2002.1075
- Elmaimouni L., Lefebvre J.E., Zhang V. et al. Guided waves in radially graded cylinders: a polynomial approach // NDT & E Int. 2005. V. 38. № 5. P. 344–353. http://dx.doi.org/10.1016/j.ndteint.2004.10.004
- Elmaimouni L., Lefebvre J.E., Raherison A. et al. Acoustical guided waves in inhomogeneous cylindrical materials // Ferroelectrics. 2010. V. 372. № 1. P. 115–123. http://dx.doi.org/10.1080/00150190802382074
- Yu J.G., Wu B. Circumferential wave in magneto-electro-elastic functionally graded cylindrical curved plates // Europ. J. Mech. Ser. A/Solids. 2009. V. 28. № 3. P. 560–568. http://dx.doi.org/10.1016/j.euromechsol.2008.07.011
- Baron C., Naili S. Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization // J. Acoust. Soc. Am. 2010. V. 127. P. 1307–1317. http://dx.doi.org/10.1121/1.3292949
- Chan Zh.L., Chen W.Q. Torsional wave propagation in a circumferentially poled piezoelectric cylindrical transducer with unattached electrodes // IEEE Trans. Ultrasonics Ferroelectrics Freq. Control. 2010. V. 57. P. 1230–1236. http://dx.doi.org/10.1109/TUFFC.2010.1536
- Baron C. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum // Ultrasonics. 2011. V. 51. № 2. P. 123–130. http://dx.doi.org/10.1016/j.ultras.2010.07.001
- Xue C.X., Pan E., Zhang S.Y. Solitary waves in a magneto-electro-elastic circular rod // Smart Materials and Structures. 2011. V. 20. № 10. P. 105010. http://dx.doi.org/10.1088/0964-1726/20/10/105010
- Xue C.-X., Pan E. On the longitudinal wave along a functionally graded magneto-electro-elastic rod // Int. J. Eng. Sci. 2013. V. 62. P. 48–55. http://dx.doi.org/10.1016/j.ijengsci.2012.08.004
- Zarezadeh E., Hosseini V., Hadi A. Torsional vibration of functionally graded nano-rod under magnetic field supported by a generalized torsional foundation based on nonlocal elasticity theory // Mech. Based Design Struct. Mach. 2019. V. 48. № 4. P. 1–16. http://dx.doi.org/10.1080/15397734.2019.1642766
- Mirsky I. Wave propagation in transversely isotropic circular cylinders, part I: theory // J. Acoust. Soc. Am. 1965. V. 37. P. 1016–1026. http://dx.doi.org/10.1121/1.1909508
- Nelson F., Dong S., Kalkra R. Vibrations and waves in laminated orthotropic circular cylinders // J. Sound Vibr. 1971. V. 18. P. 429–444. http://dx.doi.org/10.1016/0022-460X(71)90714-0
- Honarvar F., Enjilela E., Sinclair A. et al. Wave propagation in transversely isotropic cylinders // Int. J. Solids and Struct. 2007. V. 44. P. 5236–5246. http://dx.doi.org/10.1016/j.ijsolstr.2006.12.029
- Mindlin R.D., McNiven H.D. Axially symmetric waves in elastic rods // Trans. ASME. J. Appl. Mech. 1960. V. 27. P. 145–151. http://dx.doi.org/10.1115/1.3643889
- Kolsky H. Stress Waves in Solids. 2nd ed. Dover Publ.: New York, 2012. 224 p.
- Zemanek J. An experimental and theoretical investigation of elastic wave propagation in a cylinder // J. Acoust. Soc. Am. 1962. V. 51. P. 265–283. http://dx.doi.org/10.1121/1.1912838
- Valsamos G., Casadei F., Solomos G. A numerical study of wave dispersion curves in cylindrical rods with circular cross-section // Appl. Comput. Mech. 2013. V. 7. P. 99–114.
- Hartman Ph. Ordinary Differential Equations (Classics in Applied Mathematics). 2nd Ed. Philadelphia: SIAM, 1987. 632 p.
- Eastham M.S.P. The Spectral Theory of Periodic Differential Equations. Edinburgh: Scottish Academic Press, 1973. 140 p.
- Brillouin L. Wave Propagation in Periodic Structures. 2nd ed., Dover: N.Y., 1946. 600 p.
- Mead D.J. Free wave propagation in periodically supported, infinite beams // J. Sound Vibr. 1970. V. 11. P. 181–197. http://dx.doi.org/10.1016/S0022-460X(70)80062-1
- Kushwaha M., Halevi P., Dobrzynski L. et al. Acoustic band structure of periodic elastic composites // Phys. Rev. Lett. 1993. V. 71. № 13. P. 2022–2025. http://dx.doi.org/10.1103/PhysRevLett.71.2022
- Kushwaha M.S., Halevi P., Martínez G. et al. Theory of acoustic band structure of periodic elastic composites // Phys. Rev. B. 1994. V. 49. № 4. P. 2313–2322. http://dx.doi.org/10.1103/PhysRevB.49.2313
- Mester S.S., Benaroya H. Periodic and near-periodic structures // Shock Vibr. 1995. V. 2. P. 69–95. http://dx.doi.org/10.3233/SAV-1995-2107
- Bruck H.A. A one-dimensional model for designing functionally graded materials to manage stress waves // Int. J. Solids Struct. 2000. V. 37. P. 6383–6395. http://dx.doi.org/10.1016/S0020-7683(99)00236-X
- Tongele T.N., Chen T. Control of longitudinal wave propagation in conical periodic structures // J. Vib. Control. 2004. V. 10. P. 1795–1811. http://dx.doi.org/10.1177/1077546304042532
- Hussein M.I., Leamy M.J., Ruzzene M. Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook // Appl. Mech. Rev. 2014. V. 66. P. 40802. http://dx.doi.org/10.1115/1.4026911
- Morandi F., Miniaci M., Marzani A. et al. Standardised acoustic characterisation of sonic crystals noise barriers: sound insulation and reflection properties // Appl. Acoust. 2016. V. 114. P. 294–306. http://dx.doi.org/10.1016/j.apacoust.2016.07.028
- Shmat’ko A.A., Mizernik V.N., Odarenko E.N. Floquet-Bloch waves in magnetophotonic crystals with transverse magnetic field // J. Electromagnetic Waves Appl. 2020. V. 34. № 12. P. 1667–1679. http://dx.doi.org/10.1080/09205071.2020.1780955
- Askes H., Metrikine A.V., Pichugin A.V. et al. Four simplified gradient elasticity models for the simulation of dispersive wave propagation // Phil. Mag. 2008. V. 88. P. 3415–3443. http://dx.doi.org/10.1080/14786430802524108
- Butt S.N., Timothy J.J., Meschke G. Wave dispersion and propagation in state-based peridynamics // Comp. Mech. 2017. V. 60. P. 725–738. https://link.springer.com/article/10.1007/s00466-017-1439-7
- Guo Z., Wu F., Xue C. et al. Significant enhancement of magneto-optical effect in one-dimensional photonic crystals with a magnetized epsilon-near-zero defect // J. Appl. Phys. 2018. V. 124. P. 103104. http://dx.doi.org/10.1063/1.5042096
- Silling S.A. Propagation of a stress pulse in a heterogeneous elastic bar // J. Peridyn. Nonlocal Model. 2021. V. 3. P. 255–275. http://dx.doi.org/10.1007/s42102-020-00048-5
- Silling S.A. Attenuation of waves in a viscoelastic peridynamic medium // Math. Mech. Solids. 2019. V. 24. № 11. P. 3597–3613. http://dx.doi.org/10.1177/1081286519847241
- Wang L., Xu J., Wang J. Static and dynamic Green’s functions in peridynamics // J. Elast. 2017. V. 126. P. 95–125. https://link.springer.com/article/10.1007/s10659-016-9583-4
- Xu X., Foster J.T. Deriving peridynamic influence functions for one-dimensional elastic materials with periodic microstructure // J. Peridyn. Nonlocal Model. 2020. V. 2. P. 337–351. https://link.springer.com/article/10.1007/s42102-020-00037-8
- Mikata Y. Analytical solutions of peristatic and peridynamic problems for a ld infinite rod // Int. J. Solids Struct. 2012. V. 49. P. 2887–2897. http://dx.doi.org/10.1016/j.ijsolstr.2012.02.012
- Van Pamel A., Sha G., Rokhlin S.I. et al. Finite-element modelling of elastic wave propagation and scattering within heterogeneous media // Proc. Royal Soc. Ser. A. Math., Phys. Eng. Sci. 2017. V. 473. № 2197. P. 20160738. http://dx.doi.org/10.1098/rspa.2016.0738
- Chakraborty A., Gopalakrishnan S. A spectrally formulated finite element for wave propagation analysis in functionally graded beams // Int. J. Solids Struct. 2003. V. 40. P. 2421–2448. http://dx.doi.org/10.1016/S0020-7683(03)00029-5
- Wu M.-L., Wu L.-Y., Yang W.-P. et al. Elastic wave band gaps of one-dimensional phononic crystals with functionally graded materials // Smart Mater. Struct. 2009. V. 18. № 11. P. 115013. http://dx.doi.org/10.1088/0964-1726/18/11/115013
- Kuznetsov S.V. Forbidden planes for Rayleigh waves // Quart. Appl. Math. 2002. V. 60. P. 87–97. http://dx.doi.org/10.1090/qam/1878260
- Kuznetsov S.V. Love waves in layered anisotropic media // J. Appl. Math. Mech. 2006. V. 70. № 1. P. 116–127. http://dx.doi.org/10.1016/j.jappmathmech.2006.03.004
- Ilyashenko A.V., Kuznetsov S. V. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russ. J. Nondestruct. Test. 2017. V. 53. P. 243–259. http://dx.doi.org/10.1134/S1061830917040039
- Marcus M., Mink H. A Survey of Matrix Theory and Matrix Inequalities. Revised ed. N.Y.: Dover Publications, 2010. 180 p.
- Carcione J.M., Cavallini F. Forbidden directions for inhomogeneous pure shear waves in dissipative anisotropic media // Geophys. 1995. V. 60. № 2. P. 522–530. http://dx.doi.org/10.1190/1.1443789
- Carcione J.M. Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. N.Y.: Elsevier, 2014. 690 p.
- Kuznetsov S.V. Love waves in stratified monoclinic media // Quart. Appl. Math. 2004. V. 62. P. 749–766. http://dx.doi.org/10.1090/qam/2104272
- Krylov V.V. New type of vibration dampers utilising the effect of acoustic ‘black holes’ // Acta Acustica united with Acustica. 2004. V. 90. № 5. P. 830–837.
- Li S., Brun M., Djeran-Maigre I. et al. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comp. Geotech. 2019. V. 109. № 1. P. 69–81. http://dx.doi.org/10.1016/j.compgeo.2019.01.019
- Li S., Brun M., Djeran-Maigre I. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Europ. J. Environ. Civil Eng. 2020. V. 24. № 14. P. 2400–2421. http://dx.doi.org/10.1080/19648189.2018.1506826
- Li S., Brun M., Djeran-Maigre I. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comp. Geotech. 2021. V. 131. P. 103808. http://dx.doi.org/10.1016/j.compgeo.2020.103808
- Dudchenko A.V., Dias D., Kuznetsov S.V. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2021. V. 91. P. 257–276. http://dx.doi.org/10.1007/s00419-020-01768-2
- Gavrilov S.N., Herman G.C. Wave propagation in a semi-infinite heteromodular elastic bar subjected to a harmonic loading // J. Sound Vib. 2012. V. 331. № 20. P. 4464–4480. http://dx.doi.org/10.1016/j.jsv.2012.05.022
- Kaplunov J., Prikazchikov D.A., Prikazchikova L.A. et al. The lowest vibration spectra of multi-component structures with contrast material properties // J. Sound Vibr. 2019. V. 445. P. 132–147. http://dx.doi.org/10.1016/j.jsv.2019.01.013
Дополнительные файлы


