Topology optimization of mechanoacoustic systems

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The problem reducing of noise radiation represents one of the key problems in the field of acoustics. As a more effective approach to solving it, the use of topological optimization is proposed, the purpose of which is to rebuild the geometry of the structure and change the parameters of the structural material in the selected volume in accordance with specified loads and restrictions. The solution to the problem of noise minimization in mechanoacoustic systems characterized by the presence of sources of harmonic vibrations using a modified solid isotropic material with penalty (SIMP) algorithm is considered. The pressure intensity at the outer boundary of the liquid is used as the objective function, the transition to which allows the use of various types of harmonic sources in applied problems. To take this aspect into account, changes were introduced into the algorithm to allow optimization using range of frequencies. The results of numerical testing of the approach are demonstrated, obtained by solving next problems: minimizing the emitted noise of a steel frame immersed in water under the influence of a periodic force on its wall. For posed problems, optimal distributions of material in the computational domain of the structure were found, which led to a decrease in the average pressure level at the outer boundary of the liquid by 10 dB. In addition, visualizations of the pressure field in the liquid and structure vibrations were obtained before and after the optimization procedure.

About the authors

S. A. Smirnov

Institute of Applied Physics RAS

Author for correspondence.
Email: nvsarge@ipfran.ru
Nizhny Novgorod

A. S. Suvorov

Institute of Applied Physics RAS

Email: suvorov@ipfran.ru
Nizhny Novgorod

G. M. Umnyagin

Institute of Applied Physics RAS

Email: g.umnyagin@ipfran.ru
Nizhny Novgorod

References

  1. Michell A.G. LVIII. The limits of economy of material in frame-structures // Philosophical Magazine, 1904, vol. 1, no. 8, pp. 589–597. https://dx.doi.org/10.1080/14786440409463229
  2. Bendsøe M.P. Optimization of Structural Topology, Shape and Material. Berlin, Heidelberg, New York: Springer, 1995.
  3. Ma Z.-D., Kikuchi N., Cheng H.-C. Topological design for vibrating structures // Comp. Meth. Appl. Mech. Engin., vol. 121, No. 1–4, pp. 259–280. http://dx.doi.org/10.1016/0045-7825(94)00714-X
  4. Frantsuzov A.A., Shapovalov Ya.I., Vdovin D.S. Topology optimization for lifting appliances design // University proceedings. Volga region. Technical sci. 2017. V. 2. № 42. P. 99–108.
  5. Kyaw Y.K., Solyaev Yu.O. Topological optimization of reinforced panels loaded with concentrated forces // Trudy MAI, 2021, no. 120. http://dx.doi.org/10.34759/trd-2021-120-07
  6. Sorokin D.V., Babkina L.A., Brazgovka O.V. Designing various-purpose subassemblies based on topological optimization // Spacecrafts & Technologies. 2022. V. 6. № 2. P. 61–82. http://dx.doi.org/10.26732/j.st.2022.2.01
  7. Leu L. J., Huang C. W., Chou J. J. Topology optimization of elastic-plastic structures // J. Mech., 2003, vol. 19, no. 4, pp. 431–442. http://dx.doi.org/10.1017/S1727719100003282
  8. Groen J. P., Langelaar M., Sigmund O. et al. Higher-order multi-resolution topology optimization using the finite cell method // Int. J. Num. Meth. Engin., 2016, vol. 110, no. 8, pp. 903–920. http://dx.doi.org/10.1002/nme.5432
  9. Zargham S., Ward T. A., Ramli R. et al. Topology optimization: a review for structural designs under vibration problems // Structural and Multidisciplinary Optimization, 2016, vol. 53, no. 6, pp. 1157–1177. https://link.springer.com/article/10.1007/s00158-015-1370-5
  10. Dühring M. B. Topology Optimization for Acoustic Problems // Solid Mechanics and Its Applications, 2006, vol. 137, pp. 375–385. http://dx.doi.org/10.1007/1-4020-4752-5_37
  11. Luo K., Hu J., Yao S. et al. Vibro-acoustic topology optimization for improving the acoustic insulation and mechanical stiffness performance of periodic sandwich structure // iScience, vol. 27, no. 9, pp. 110648. http://dx.doi.org/10.1016/j.isci.2024.110648
  12. Hu J., Li J.-Ch., Chen X. et al. Multi-material topology optimization of vibro-acoustic structures with acoustic, poroelastic and elastic media under mass constraint // Computer Methods in Appl. Mech.&Engin., 2025, vol. 444, pp. 118109. http://dx.doi.org/10.1016/j.cma.2025.118109
  13. Xiang C., Chen A., Li H. et al. Two stage multiobjective topology optimization method via SwinUnet with enhanced generalization // Scientific Reports, 2025, vol. 15, no. 1, pp. 9350. http://dx.doi.org/10.1038/s41598-025-92793-0
  14. Zhang X., Kang Z. Topology optimization of damping layers for minimizing sound radiation of shell structures // J. of Sound&Vibr., vol. 332. no. 10, pp. 2519. http://dx.doi.org/10.1016/j.jsv.2012.12.022
  15. Ma L., Cheng L. Topological optimization of damping layout for minimized sound radiation of an acoustic black hole plate // J. of Sound&Vibr., 2019, vol. 458. http://dx.doi.org/10.1016/j.jsv.2019.06.036
  16. Gao R., Zhang Y., Kennedy D. Topology optimization of sound absorbing layer for the mid-frequency vibration of vibro-acoustic systems // Structural and Multidisciplinary Optimization, 2019, vol. 59, no. 1. https://doi.org/10.1007/S00158-018-2156-3
  17. Smirnov S.A., Suvorov A.S., Suslov N.S. et al. Noise Reduction of Mechanoacoustic Systems by Topological Optimization Method // 2022 Int. Conference on Dynamics and Vibroacoustics of Machines, 2022. http://dx.doi.org/10.1109/DVM55487.2022.9930932
  18. Vicente W.M., Picelli R., Pavanello R. et al. Topology optimization of frequency responses of fluid–structure interaction systems // Finite Elements in Analysis&Design, 2015, vol. 98, pp. 1–13. http://dx.doi.org/10.1016/j.finel.2015.01.009
  19. Rohan E., Lukeš V. (2022). Homogenization of the vibro-acoustic transmission on periodically perforated elastic plates with arrays of resonators // Appl. Mathematical Modelling, 2022, vol. 111, pp. 201–227. https://doi.org/10.1016/j.apm.2022.05.040
  20. Zhao W., Zheng C., Liu C. et al. Minimization of sound radiation in fully coupled structural–acoustic systems using FEM-BEM based topology optimization // Struct.&Multidisciplinary Optimization, 2017, vol. 58, no. 1. https://doi.org/10.1007/s00158-017-1881-3
  21. Olhoff N., Du J. Topological Design for Minimum Dynamic Compliance of Structures under Forced Vibration // CISM International Centre for Mechanical Sciences, 2014, pp. 325–339. https://doi.org/10.1007/978-3-7091-1643-2_13
  22. Goo S., Kook J., Wang S. Topology optimization of vibroacoustic problems using the hybrid finite element–wave based method // Computer Methods in Applied Mechanics and Engineering, 2020, vol. 364, pp. 112932. https://doi.org/10.1016/j.cma.2020.112932
  23. Yoon G. H., Jensen J. S., Sigmund O. Topology optimization of acoustic–structure interaction problems using a mixed finite element formulation // International Journal for Numerical Methods in Engineering, 2007, vol. 70, no. 9, pp. 1049–1075. http://dx.doi.org/10.1002/nme.1900
  24. Pedersen N. Maximization of eigenvalues using topology optimization // Structural and Multidisciplinary Optimization, 2000, vol. 20, no. 1, pp. 2–11. https://doi.org/10.1007/s001580050130
  25. Yago D., Cante J., Lloberas-Valls O. et al. Topology Optimization Methods for 3D Structural Problems: A Comparative Study // Archives of Computational Methods in Engineering, 2022, vol. 29, no. 7, pp. 1525–1567. https://doi.org/10.1007/s11831-021-09626-2
  26. Belousov E.I., Rimsky-Korsakov A.V. The principle of reciprocity in acoustics and its application to the calculation of sound fields of vibrating bodies // Acoustical Physics, 1975, vol.21, no. 2, pp. 161–172.
  27. Korotin P.I., Salin B.M., Tyutin V.A. Issues of acoustic diagnostics of vibroactive mechanisms by reciprocity methods // Acoustical Physics, 1986, vol. 32, no.1, pp. 71–75.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).