Topology optimization of mechanoacoustic systems
- 作者: Smirnov S.A.1, Suvorov A.S.1, Umnyagin G.M.1
-
隶属关系:
- Institute of Applied Physics RAS
- 期: 卷 89, 编号 6 (2025)
- 页面: 926-942
- 栏目: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/364146
- DOI: https://doi.org/10.7868/S3034575825060046
- ID: 364146
如何引用文章
详细
The problem reducing of noise radiation represents one of the key problems in the field of acoustics. As a more effective approach to solving it, the use of topological optimization is proposed, the purpose of which is to rebuild the geometry of the structure and change the parameters of the structural material in the selected volume in accordance with specified loads and restrictions. The solution to the problem of noise minimization in mechanoacoustic systems characterized by the presence of sources of harmonic vibrations using a modified solid isotropic material with penalty (SIMP) algorithm is considered. The pressure intensity at the outer boundary of the liquid is used as the objective function, the transition to which allows the use of various types of harmonic sources in applied problems. To take this aspect into account, changes were introduced into the algorithm to allow optimization using range of frequencies. The results of numerical testing of the approach are demonstrated, obtained by solving next problems: minimizing the emitted noise of a steel frame immersed in water under the influence of a periodic force on its wall. For posed problems, optimal distributions of material in the computational domain of the structure were found, which led to a decrease in the average pressure level at the outer boundary of the liquid by 10 dB. In addition, visualizations of the pressure field in the liquid and structure vibrations were obtained before and after the optimization procedure.
作者简介
S. Smirnov
Institute of Applied Physics RAS
编辑信件的主要联系方式.
Email: nvsarge@ipfran.ru
Nizhny Novgorod
A. Suvorov
Institute of Applied Physics RAS
Email: suvorov@ipfran.ru
Nizhny Novgorod
G. Umnyagin
Institute of Applied Physics RAS
Email: g.umnyagin@ipfran.ru
Nizhny Novgorod
参考
- Michell A.G. LVIII. The limits of economy of material in frame-structures // Philosophical Magazine. 1904. V. 1. № 8. P. 589–597. https://dx.doi.org/10.1080/14786440409463229
- Bendsøe M.P. Optimization of Structural Topology, Shape and Material. Berlin, Heidelberg, New York: Springer, 1995.
- Ma Z.-D., Kikuchi N., Cheng H.-C. Topological design for vibrating structures // Computer Methods in Applied Mechanics and Engineering. V. 121. № 1–4. P. 259–280. http://dx.doi.org/10.1016/0045-7825(94)00714-X
- Французов А.В., Шаповалов Я.И., Вдовин Д.С. Применение метода топологической оптимизации в задачах проектирования грузоподъемной техники // Известия ВУЗов. Поволжский регион. Техн. Науки. 2017. V. 2. № 42. P. 99–108.
- Чжо Й.К., Соляев Ю.О. Топологическая оптимизация подкрепленных панелей, нагруженных сосредоточенными силами // Труды МАИ. 2021. № 120.
- Сорокин Д.В., Бабкина Л.А., Бразговка О.В. Проектирование элементов конструкций различного назначения на основе топологической оптимизации // Космические аппараты и технологии. 2022. V. 2. № 40.
- Leu L.J., Huang C.W., Chou J.J. Topology optimization of elastic-plastic structures // J. Mech. 2003. V. 19. № 4. Р. 431–442. http://dx.doi.org/10.1017/S1727719100003282
- Groen J.P., Langelaar M., Sigmund O. et al. Higher-order multi-resolution topology optimization using the finite cell method // Int. J. Num. Meth. Engin. 2016. V. 110. № 8. P. 903–920. http://dx.doi.org/10.1002/nme.5432
- Zargham S., Ward T.A., Ramli R. et al. Topology optimization: a review for structural designs under vibration problems // Structural and Multidisciplinary Optimization. 2016. V. 53. № 6. P. 1157–1177. https://link.springer.com/article/10.1007/s00158-015-1370-5
- Dühring M.B. Topology Optimization for Acoustic Problems // Solid Mechanics and Its Applications. 2006. V. 137. P. 375–385. http://dx.doi.org/10.1007/1-4020-4752-5_37
- Luo K., Hu J., Yao S. et al. Vibro-acoustic topology optimization for improving the acoustic insulation and mechanical stiffness performance of periodic sandwich structure // iScience. 2024. V. 27. № 9. P. 110648. https://doi.org/10.1016/j.isci.2024.110648
- Hu J., Li J.-Ch., Chen X. et al. Multi-material topology optimization of vibro-acoustic structures with acoustic, poroelastic and elastic media under mass constraint // Computer Methods in Appl. Mech.&Engin. 2025. V. 444. P. 118109. http://dx.doi.org/10.1016/j.cma.2025.118109
- Xiang C., Chen A., Li H. et al. Two stage multiobjective topology optimization method via SwinUnet with enhanced generalization // Scientific Reports. 2025. V. 15. № 1. P. 9350. http://dx.doi.org/10.1038/s41598-025-92793-0
- Zhang X., Kang Z. Topology optimization of damping layers for minimizing sound radiation of shell structures // J. of Sound&Vibr. V. 332. № 10. P. 2519. http://dx.doi.org/10.1016/j.jsv.2012.12.022
- Ma L., Cheng L. Topological optimization of damping layout for minimized sound radiation of an acoustic black hole plate // J. of Sound& Vibr. V. 458. http://dx.doi.org/10.1016/j.jsv.2019.06.036
- Gao R., Zhang Y., Kennedy D. Topology optimization of sound absorbing layer for the mid-frequency vibration of vibro-acoustic systems // Structural and Multidisciplinary Optimization. 2019. V. 59. № 1. https://doi.org/10.1007/S00158-018-2156-3
- Smirnov S.A., Suvorov A.S., Suslov N.S. et al. Noise Reduction of Mechanoacoustic Systems by Topological Optimization Method // 2022 Int.Conference on Dynamics and Vibroacoustics of Machines. 2022. http://dx.doi.org/10.1109/DVM55487.2022.9930932
- Vicente W.M., Picelli R., Pavanello R. et al. Topology optimization of frequency responses of fluid–structure interaction systems // Finite Elements in Analysis and Design. 2015. V. 98. P. 1–13. http://dx.doi.org/10.1016/j.finel.2015.01.009
- Rohan E., Lukeš V. Homogenization of the vibro-acoustic transmission on periodically perforated elastic plates with arrays of resonators // Appl. Mathematical Modelling. 2022. V. 111. P. 201–227. https://doi.org/10.1016/j.apm.2022.05.040
- Zhao W., Zheng C., Liu C. et al. Minimization of sound radiation in fully coupled structural–acoustic systems using FEM-BEM based topology optimization // Structural and Multidisciplinary Optimization. 2018. V. 58. № 1. https://doi.org/10.1007/s00158-017-1881-3
- Olhoff N., Du J. Topological Design for Minimum Dynamic Compliance of Structures under Forced Vibration // CISM Int. Centre for Mechanical Sci. 2014. P. 325–339. https://doi.org/10.1007/978-3-7091-1643-2_13
- Goo S., Kook J., Wang S. Topology optimization of vibroacoustic problems using the hybrid finite element–wave based method // Computer Methods in Appl. Mech.&Engin. 2020. V. 364. P. 112932. http://dx.doi.org/10.1016/j.cma.2020.112932
- Yoon G.H., Jensen J.S., Sigmund O. Topology optimization of acoustic–structure interaction problems using a mixed finite element formulation // Int. J. for Numerical Methods in Engin. 2007. V. 70. № 9. P. 1049–1075. http://dx.doi.org/10.1002/nme.1900
- Pedersen N. Maximization of eigenvalues using topology optimization // Structural and Multidisciplinary Optimization. 2000. V. 20. № 1. P. 2–11. https://doi.org/10.1007/s001580050130
- Yago D., Cante J., Lloberas-Valls O. et al. Topology Optimization Methods for 3D Structural Problems: A Comparative Study // Archives of Computational Methods in Engineering. 2022. V. 29. № 7. P. 1525–1567. https://doi.org/10.1007/s11831-021-09626-2
- Белоусов Е.И., Римский-Корсаков А.В. Принцип взаимности в акустике и его применение для расчёта звуковых полей колеблющихся тел // Акустический журнал. 1975. Т. 21. № 2. С. 161–172.
- Коротин П.И., Салин Б.М., Тютин В.А. Вопросы акустической диагностики виброактивных механизмов методами взаимности // Акустический журнал. 1986. Т. 32. № 1. С. 71–75.
补充文件

