Simulation of the Flow Velocity Field on the Free Surface of a Stratified Fluid

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper considers the problem of simulation of the velocity field on the free surface of an ideal stratified fluid generated by internal gravitational waves that reached the surface. The buoyancy frequency may vary with depth. The computer program has been written that allows calculating all components of the velocity field on the surface. It is shown that the calculation results for the vertical velocity component are consistent with the known asymptotics obtained in the far-field approximation for the cases of uniform and rectilinear motion of a point mass source horizontally (by B. Voisin) or at a fixed angle to the horizon (by M.M. Scase and S.B. Dalziel) in a uniformly stratified fluid.

Full Text

Restricted Access

About the authors

D. Yu. Knyazkov

Ishlinsky Institute for Problems in Mechanics of the RAS

Author for correspondence.
Email: knyaz@ipmnet.ru
Russian Federation, Moscow

References

  1. Nesterov S.V., Shamaev A.S., Shamaev S.I. Methods, Algorithms and Tools of Aerospace Computer Tomography of Near-Surface Layer of the Earth. Moscow: Nauch. Mir, 1996. 272 p. (in Russian)
  2. Ulaby F.T., Long D.G. Microwave Radar and Radiometric Remote Sensing. Artech, 2015. 1116 p.
  3. Jackson C.R., da Silva J.C.B., Jeans G. et al. Nonlinear internal waves in synthetic aperture radar imagery // Oceanogr., 2013, vol. 26, no. 2, pp. 68–79.
  4. Baydulov V.G., Knyazkov D., Shamaev A.S. Motion of mass source in stratified fluid // J. Phys.: Conf. Ser., 2021, vol. 2224, 2nd Int. Symp. on Automation, Information and Computing (ISAIC 2021), December 03–06 2021 Online. pp. 012038-1–8. 2022. https://doi.org/10.1088/1742-6596/2224/1/012038
  5. Baydulov V.G. On the solution of the inverse problem of the motion of a source in a stratified fluid // in: Proc. 12th Int. Conf. – School of Young Sci. Waves and Vortices in Complex Media. Moscow, Dec. 01–03, 2021. Moscow: ISPOPrint, 2021. pp. 31–35.
  6. Ulaby F.T., Moore R.K., Fung A.K. Microwave Remote Sensing. Active and Passive. Massachusetts: Addison-Wesley Publishing Company, 1981. 456 p.
  7. Knyazkov D. Diffraction of Plane Wave at 3-dimensional Periodic Layer // AIP Conf. Proc., 2018, vol. 1978, 470075-1–4. https://doi.org/10.1063/1.5044145
  8. Bulatov M.G., Kravtsov Yu.A. Lavrova O.Yu. et al. Physical mechanisms of aerospace radar imaging of the ocean // Phys. Usp., 2003, vol. 46, no. 1, pp. 63–79.
  9. Knyazkov D.Y., Baydulov V.G., Savin A.S., Shamaev A.S. Direct and inverse problems of the dynamics of surface waves caused by the flow around an underwater obstacle // Fluid Dyn., 2023, vol. 58, pp. 1725–1733. https://doi.org/10.1134/S0015462823603030
  10. Gavrikov A., Knyazkov D., Romanova A., Chernik V., Shamaev A. Simulation of influence of the surface disturbance on the ocean self-radiation spectrum // Progr. Syst.: Theory&Appl., 2016, vol. 7, iss. 2, pp. 73–84. https://doi.org/10.25209/2079-3316-2016-7-2-73-84
  11. Knyazkov D., Shamaev A. Rectilinear motion of mass source in non-uniformly stratified fluid. AIP Conf. Proc., 2024, vol. 3094(1), pp. 500028-1–4. https://doi.org/10.1063/5.0210166
  12. Gorelov, A.M., Nosov, V.N., Savin, A.S. et al. Method of calculating surface disturbances over a point source and a dipole // Fluid Dyn., 2009, vol. 44, no. 1, pp. 170–174. https://doi.org/10.1134/S0015462809010177
  13. Voisin B. Internal wave generation in uniformly stratified fluids. Part 2. Moving point sources // J. Fluid Mech., 1994, vol. 261, pp. 333–374.
  14. Scase M.M., Dalziel S.B. Internal wave fields and drag generated by a translating body in a stratified fluid // J. Fluid Mech., 2004, vol. 498, pp. 289–313.
  15. Matyushin P.V. Process of the formation of internal waves initiated by the start of motion of a body in a stratified viscous fluid // Fluid Dyn., 2019, vol. 54, no. 3, pp. 374–388. https://doi.org/10.1134/S0015462819020095
  16. Bulatov V.V. Mathematical modeling of dynamics of internal gravity waves in the ocean with arbitrary distribution of buoyancy frequency // Fluid Dyn., 2023, vol. 58 (Suppl 2), pp. 274–285. https://doi.org/https://doi.org/10.1134/S0015462823603169
  17. Zarubin N.A., Shamaev A.S. Investigation of the model of interaction of wind waves with the sea current // Marine Intellect. Technol., 2023, vol. 62, pp. 93–98. (in Russian) https://doi.org/10.37220/MIТ. 2023.62.4.070
  18. Bulatov V.V., Vladimirov Yu.V. Wave Dynamics of Stratified Mediums. Moscow: Nauka, 2012. 584 p.
  19. Bulatov V.V., Vladimirov Yu.V. Far fields of internal gravitational waves from moving perturbance sources // Herald of the Bauman Moscow State Tech. Univ., Nat. Sci., 2018, no. 4, pp. 73–89. (in Russian) https://doi.org/10.18698/1812-3368-2018-4-73-89
  20. Saad Y., Schultz M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems // SIAM J. on Sci.&Statist. Comput., 1986, vol. 7:3, pp. 856–869.
  21. Galassi M., Davies J., Theiler J. et al. GNU Scientific Library Reference Manual (3rd Ed.). Network Theory Ltd, 2009. 592 p.
  22. Chashechkin Y., Gumennik E., Sysoeva E. Transformation of a density field by a three-dimensional body moving in a continuously stratified fluid // J. Appl. Mech.&Tech. Phys., 1995, vol. 36, pp. 19–29.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The area of Ω

Download (18KB)
3. Fig. 2. Scheme for calculating the asymptotics of the velocity field during horizontal motion of a mass source from [13]

Download (5KB)
4. Fig. 3. Simulation of horizontal motion in an ideal uniformly stratified fluid, N = 0.8. The velocity of motion V = 1 m/s, the vertical component of the velocity of the fluid vz (x, 1, z) is shown in the vertical section y = 1. Travel time T = 125 s for (a). The numerical solution (a) and the analytical approximation (b) are shown

Download (23KB)
5. Fig. 4. Scheme for calculating the asymptotics of the velocity field when a mass source is moving at an angle to the horizon from [14]

Download (6KB)
6. Fig. 5. Simulation of the propagation of internal waves from a mass source that moves uniformly and rectilinearly at a fixed angle γ = 30° to the horizon, N = 0.8. The velocity of motion V = 1 m/s, the vertical component of the velocity of the liquid vz (x, 1, z) is shown in the vertical section y = 1. Travel time T = 139.3 s. The numerical solution (a) and the analytical approximation (b) are shown

Download (20KB)
7. Fig. 6. The magnitude of the vertical velocity component vz on the free surface (a) and in the liquid column (b) at time t = 175 s

Download (21KB)
8. Fig. 7. The flow field (vx, vy) on the free surface z = H at time t = 175 s: the x-component (a) and the y-component (b) are shown

Download (20KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».