Simulation of the Flow Velocity Field on the Free Surface of a Stratified Fluid
- Authors: Knyazkov D.Y.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics of the RAS
- Issue: Vol 88, No 5 (2024)
- Pages: 745-757
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/280966
- DOI: https://doi.org/10.31857/S0032823524050074
- EDN: https://elibrary.ru/JPKACG
- ID: 280966
Cite item
Abstract
The paper considers the problem of simulation of the velocity field on the free surface of an ideal stratified fluid generated by internal gravitational waves that reached the surface. The buoyancy frequency may vary with depth. The computer program has been written that allows calculating all components of the velocity field on the surface. It is shown that the calculation results for the vertical velocity component are consistent with the known asymptotics obtained in the far-field approximation for the cases of uniform and rectilinear motion of a point mass source horizontally (by B. Voisin) or at a fixed angle to the horizon (by M.M. Scase and S.B. Dalziel) in a uniformly stratified fluid.
Full Text

About the authors
D. Yu. Knyazkov
Ishlinsky Institute for Problems in Mechanics of the RAS
Author for correspondence.
Email: knyaz@ipmnet.ru
Russian Federation, Moscow
References
- Nesterov S.V., Shamaev A.S., Shamaev S.I. Methods, Algorithms and Tools of Aerospace Computer Tomography of Near-Surface Layer of the Earth. Moscow: Nauch. Mir, 1996. 272 p. (in Russian)
- Ulaby F.T., Long D.G. Microwave Radar and Radiometric Remote Sensing. Artech, 2015. 1116 p.
- Jackson C.R., da Silva J.C.B., Jeans G. et al. Nonlinear internal waves in synthetic aperture radar imagery // Oceanogr., 2013, vol. 26, no. 2, pp. 68–79.
- Baydulov V.G., Knyazkov D., Shamaev A.S. Motion of mass source in stratified fluid // J. Phys.: Conf. Ser., 2021, vol. 2224, 2nd Int. Symp. on Automation, Information and Computing (ISAIC 2021), December 03–06 2021 Online. pp. 012038-1–8. 2022. https://doi.org/10.1088/1742-6596/2224/1/012038
- Baydulov V.G. On the solution of the inverse problem of the motion of a source in a stratified fluid // in: Proc. 12th Int. Conf. – School of Young Sci. Waves and Vortices in Complex Media. Moscow, Dec. 01–03, 2021. Moscow: ISPOPrint, 2021. pp. 31–35.
- Ulaby F.T., Moore R.K., Fung A.K. Microwave Remote Sensing. Active and Passive. Massachusetts: Addison-Wesley Publishing Company, 1981. 456 p.
- Knyazkov D. Diffraction of Plane Wave at 3-dimensional Periodic Layer // AIP Conf. Proc., 2018, vol. 1978, 470075-1–4. https://doi.org/10.1063/1.5044145
- Bulatov M.G., Kravtsov Yu.A. Lavrova O.Yu. et al. Physical mechanisms of aerospace radar imaging of the ocean // Phys. Usp., 2003, vol. 46, no. 1, pp. 63–79.
- Knyazkov D.Y., Baydulov V.G., Savin A.S., Shamaev A.S. Direct and inverse problems of the dynamics of surface waves caused by the flow around an underwater obstacle // Fluid Dyn., 2023, vol. 58, pp. 1725–1733. https://doi.org/10.1134/S0015462823603030
- Gavrikov A., Knyazkov D., Romanova A., Chernik V., Shamaev A. Simulation of influence of the surface disturbance on the ocean self-radiation spectrum // Progr. Syst.: Theory&Appl., 2016, vol. 7, iss. 2, pp. 73–84. https://doi.org/10.25209/2079-3316-2016-7-2-73-84
- Knyazkov D., Shamaev A. Rectilinear motion of mass source in non-uniformly stratified fluid. AIP Conf. Proc., 2024, vol. 3094(1), pp. 500028-1–4. https://doi.org/10.1063/5.0210166
- Gorelov, A.M., Nosov, V.N., Savin, A.S. et al. Method of calculating surface disturbances over a point source and a dipole // Fluid Dyn., 2009, vol. 44, no. 1, pp. 170–174. https://doi.org/10.1134/S0015462809010177
- Voisin B. Internal wave generation in uniformly stratified fluids. Part 2. Moving point sources // J. Fluid Mech., 1994, vol. 261, pp. 333–374.
- Scase M.M., Dalziel S.B. Internal wave fields and drag generated by a translating body in a stratified fluid // J. Fluid Mech., 2004, vol. 498, pp. 289–313.
- Matyushin P.V. Process of the formation of internal waves initiated by the start of motion of a body in a stratified viscous fluid // Fluid Dyn., 2019, vol. 54, no. 3, pp. 374–388. https://doi.org/10.1134/S0015462819020095
- Bulatov V.V. Mathematical modeling of dynamics of internal gravity waves in the ocean with arbitrary distribution of buoyancy frequency // Fluid Dyn., 2023, vol. 58 (Suppl 2), pp. 274–285. https://doi.org/https://doi.org/10.1134/S0015462823603169
- Zarubin N.A., Shamaev A.S. Investigation of the model of interaction of wind waves with the sea current // Marine Intellect. Technol., 2023, vol. 62, pp. 93–98. (in Russian) https://doi.org/10.37220/MIТ. 2023.62.4.070
- Bulatov V.V., Vladimirov Yu.V. Wave Dynamics of Stratified Mediums. Moscow: Nauka, 2012. 584 p.
- Bulatov V.V., Vladimirov Yu.V. Far fields of internal gravitational waves from moving perturbance sources // Herald of the Bauman Moscow State Tech. Univ., Nat. Sci., 2018, no. 4, pp. 73–89. (in Russian) https://doi.org/10.18698/1812-3368-2018-4-73-89
- Saad Y., Schultz M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems // SIAM J. on Sci.&Statist. Comput., 1986, vol. 7:3, pp. 856–869.
- Galassi M., Davies J., Theiler J. et al. GNU Scientific Library Reference Manual (3rd Ed.). Network Theory Ltd, 2009. 592 p.
- Chashechkin Y., Gumennik E., Sysoeva E. Transformation of a density field by a three-dimensional body moving in a continuously stratified fluid // J. Appl. Mech.&Tech. Phys., 1995, vol. 36, pp. 19–29.
Supplementary files
