Body Waves Induced by a Concentrated Force
- Authors: Ilyashenko A.V.1
-
Affiliations:
- Moscow State University of Civil Engineering
- Issue: Vol 88, No 5 (2024)
- Pages: 738-744
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/280965
- DOI: https://doi.org/10.31857/S0032823524050069
- EDN: https://elibrary.ru/JPKIGU
- ID: 280965
Cite item
Abstract
Body waves in an isotropic elastic space propagating along the line of action of a concentrated force singularity are analyzed. It is shown that along the line of action of the force singularity, in addition to the P-wave, the S-wave also propagates. The erroneous statements found in a number of publications about the absence of S-waves on the line of action of the force singularity are noted.
Keywords
Full Text

About the authors
A. V. Ilyashenko
Moscow State University of Civil Engineering
Author for correspondence.
Email: IlyashenkoAV@mgsu.ru
Russian Federation, Moscow
References
- Nakano H. On Rayleigh waves // Japan J. Astron.&Geophys., 1925, vol. 2, pp. 233–326.
- Nakano H. Some problems concerning the propagations of the disturbances in and on semi-infinite elastic solid // Geophys. Mag., 1930, vol. 2, pp. 189–348.
- Fuchs K., Müller G. Computation of synthetic seismograms with the reflectivity method and comparison with observations // Geophys. J.R. Astr. Soc., 1971, vol. 23, pp. 417–433.
- Kennett B.L.N., Kerry N.J., Woodhouse J.H. Symmetries in the reflection and transmission of elastic waves // Geophys. J.R. Astr. Soc., 1978, vol. 52, pp. 215–230.
- Wang, D. et al. Ground surface response induced by shallow buried explosions // Earthquake Eng.&Eng. Vib., 2014, vol. 13, pp. 163–169.
- Cagniard L. Reflexion et Refraction des Ondes Seismiques Progressives. Paris: Gauthier-Villard, 1939.
- Lapwood E.R. The disturbance due to a line source in a semiinfinite elastic medium // Phil. Trans. R. Soc. London, Ser. A, 1949, vol. 242, pp. 63–100.
- Pekeris C.L. The seismic buried pulse // Proc. Nat. Acad. Sci., 1955, vol. 41, pp. 629–639.
- Garvin W.W. Exact transient solution of the buried line source problem // Proc. Roy. Soc. A, 1956, vol. 234, pp. 528–541.
- Pekeris C.L., Lifson H. Motion of the surface of a uniform elastic half-space produced by a burried pulse // J. Acoust. Soc. Am., 1957, vol. 29, pp. 1233–1238.
- Ewing W.M., Jardetzky W.S., Press F. Elastic Waves in Layered Media. N.Y.: McGraw-Hill, 1957.
- Payton R.G. Epicenter motion of an elastic half-space due to buried stationary and moving line sources // Int. J. Solids Struct., 1968, vol.4, pp. 287–300.
- Norwood F.R. Similarity solutions in plane elastodynamics // Int. J. Solids Struct., 1973, vol. 9(7), pp. 789–803.
- Johnson L.R. Green’s function for Lamb’s problem // Geophys. J.R. Astron. Soc., 1974, vol. 37, pp. 99–131.
- Payton R.G. Epicenter motion of a transversely isotropic elastic half-space due to a suddenly applied buried point source // Int. J. Engng. Sci., 1979, vol. 17, pp. 879–887.
- Poruchikov V.B. Methods of the Classical Theory of Elastodynamics. Berlin: Springer, 1993.
- Willams D.P., Craster R.V. Cagniard-de Hoop path perturbations with applications to nongeometric wave arrivals // J. Eng. Math., 2000, vol. 37, pp. 253–272.
- Sanchez-Sesma F, Iturraran-Viveros U. The classic Garvin’s problem revisited // Bull. Seismol. Soc. Am., 2006, vol. 96(4A), pp. 1344–1351.
- Sanchez-Sesma F, Iturraran-Viveros U., Kausel E. Garvin’s generalized problem revisited // Soil Dyn. Earthquake Eng., 2013, vol. 47, pp. 4–15.
- Feng X., Zhang H. Exact closed-form solutions for Lamb’s problem // Geophys. J. Int., 2018, vol. 214, pp. 444–459.
- Lamb H. On the propagation of tremors over the surface of an elastic solid // Philos. Trans. Roy. Soc. London A, 1904, vol. 203, pp. 1–42.
- Kuznetsov S.V. “Forbidden” planes for Rayleigh waves // Quart. Appl. Math., 2002, vol. 60, pp. 87–97.
- Kravtsov A.V. et al. Finite element models in Lamb’s problem // Mech. Solids, 2011, vol. 46, pp. 952–959.
- Kuznetsov S.V. Seismic waves and seismic barriers // Acoust. Phys., 2011, vol. 57, pp. 420–426.
- Terentjeva E.O. et al. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acoust. Phys., 2015, vol. 61, pp. 356–367.
- Il’yasov K.K. et al. Exterior 3D Lamb problem: Harmonic load distributed over a surface // Mech. of Solids, 2016, vol. 51, pp. 39–45.
- Li S. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comp. Geotech., 2021, vol. 131, Paper 103808.
- Dai Y., Yan S., Zhang B. Acoustic field excited by single force with arbitrary direction in semi-infinite elastic space // Acoust. Phys., 2019, vol. 65, pp. 235–245.
- Dai Y., Yan S., Zhang B. Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid // Chinese Phys. B, 2020, vol. 29, Paper 034304.
- Dai Y., Yan S., Zhang B. Research on ultrasonic multi-wave focusing and imaging method for linear phased arrays // Chinese Phys. B, 2021, vol. 30, Paper 074301.
- Auld B.A. Acoustic Fields and Waves in Solids. Malabar (Florida): Krieger Pub., 1990.
- Gurtin M.E. The linear theory of elasticity // in: Linear Theories of Elasticity and Thermoelasticity / Ed. by Truesdell C. Berlin;Heidelberg: Springer, 1973.
- Goldstein R.V. et al. The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading // Arch. APl. Mech., 2016, vol. 86, pp. 2021–2031.
- Pao Y.-H., Gajewski R.R. The generalized ray theory and transient responses of layered elastic solids // Phys. Acoust., 1977, vol. 13, pp. 183–265.
- Kupradze V.D. The Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Amsterdam: North-Holland, 1979.
- Ilyashenko A.V. et al. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russ. J. Nondestruct. Test., 2017, vol. 53, pp. 243–259.
- Kuznetsov S.V. Love waves in stratified monoclinic media // Quart. Appl. Math., 2004, vol. 62, pp. 749–766.
- Kuznetsov S.V. Love waves in layered anisotropic media // JAMM, 2006, vol. 70, pp. 116–127.
Supplementary files
