Body Waves Induced by a Concentrated Force
- Авторлар: Ilyashenko A.V.1
-
Мекемелер:
- Moscow State University of Civil Engineering
- Шығарылым: Том 88, № 5 (2024)
- Беттер: 738-744
- Бөлім: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/280965
- DOI: https://doi.org/10.31857/S0032823524050069
- EDN: https://elibrary.ru/JPKIGU
- ID: 280965
Дәйексөз келтіру
Толық мәтін
Аннотация
Body waves in an isotropic elastic space propagating along the line of action of a concentrated force singularity are analyzed. It is shown that along the line of action of the force singularity, in addition to the P-wave, the S-wave also propagates. The erroneous statements found in a number of publications about the absence of S-waves on the line of action of the force singularity are noted.
Негізгі сөздер
Толық мәтін
- Введение. Ниже дается краткий обзор исследований по волнам в изотропном упругом пространстве, в которых исследуются объемные акустические волны, появляющиеся на линии действия силовой особенности.
В одной из первых работ по объемным волнам в изотропной упругой среде [1, 2], где анализировались сейсмограммы, вызванные точечным δ-образным (по временной переменной) силовым воздействием, расположенным в изотропном упругом полупространстве, был отмечен феномен появления всплеска на сейсмограмме, характерного по времени прихода для S-волны (рис. 1).
Рис. 1. а) Схема внутренней задачи Лэмба для вертикального силового воздействия в виде временного δ-образного импульса; б) Сейсмограмма на линии действия силовой особенности [25], показывающая наличие пика на сейсмограмме вертикальной компоненты перемещений, отвечающего приходу S-волны
Факт присутствия на сейсмограммах пика, характерного для прихода S-волны, в дальнейшем неоднократно отмечался как в экспериментальных [3–5], так и в теоретических [6–20] исследованиях волновых процессов, связанных с решением внутренней задачи Лэмба [21], аналогичный эффект наблюдался и при численных исследованиях внутренней задачи Лэмба [22–27]. На рис. 1, б, показана сейсмограмма вертикальной компоненты смещения (в точке на линии действия сосредоточенной силовой особенности), имеющая пик, отвечающий приходу S-волны. Надо отметить, что горизонтальная компонента смещений на линии действия силы нулевая, см. рис. 1, б. В большинстве теоретических исследований [6–9, 16] появление этого пика, объясняется наличием соответствующего полюса в несобственных интегралах, описывающих решение для объемных волн, появляющихся при решении внутренней задачи Лэмба. В этой связи особый интерес представляют работы [28–30], в которых отмечено, что на линии действия силовой особенности, являющейся осью симметрии, поперечные волны не могут возникать, поскольку последние из-за присутствия касательных компонент напряжений и деформаций необходимо кососимметричны в окрестности линии действия силы.
Ниже показано, что во внутренней задаче Лэмба для изотропного упругого полупространства или полуплоскости, см. рис. 1,а, на оси симметрии, определяемой линией действия силовой особенности, (i) S-волна существует; (ii) эта волна не содержит касательных компонент тензора напряжений, нормальных к оси симметрии; и (iii) горизонтальные компоненты смещения равны нулю. Решение рассматриваемой задачи связано с представлением Гельмгольца для поля смещений [31] и разложением тензорных полей на девиаторные и шаровые тензоры [32].
- Уравнения движения. Линейные уравнения движения для изотропной упругой среды могут быть записаны в виде [31]
, (2.1)
где u – поле смещений, x – пространственные координаты, t – время, I – единичный тенор второго ранга, cP и cS – скорости объемных P- и S-волн соответственно
(2.2)
В этих соотношениях ρ – плотность среды, а λ и μ – параметры Ламе, связанные с модулем Юнга E и коэффициентом Пуассона ν соотношениями
(2.3)
Представление Гельмгольца для поля смещений имеет вид [31]
, (2.4)
где φ – скалярный, а ψ – векторный потенциал. Подстановка представления (2.4) в уравнения движения (2.1) и исключение из рассмотрения линейных (по пространственным координатам) составляющих, дает [32]
(2.5)
Уравнения (2.5) показывают, что скалярным потенциалом φ определяется объемная P волна, а векторным потенциалом ψ – объемная S волна [32].
- Разложение тензорных полей на девиаторный и шаровой тензоры. Инфинитезимальное поле деформаций определяется по полю смещений соотношениями Коши [32]
(3.1)
Шаровой тензор, определяемый тензором деформаций, представим в виде [32]
, (3.2)
где θ – объемная деформация. Аналогичным образом определяется девиатор деформаций e [32]
(3.3)
Подстановка представления Гельмгольца (2.4) в выражение (3.2), дает [33]
(3.4)
Таким образом, объемная деформация однозначно определяется скалярным потенциалом, однако, девиатор (3.3) определяется как скалярным, так и векторным потенциалом [33, 34]
(3.5)
Рассматривая закон Гука для изотропной среды в форме соотношений между девиаторными и шаровыми компонентами [32]
, (3.6)
где p – давление, s – девиатор напряжений, а K – объемный модуль,
, (3.7)
получим следующие выражения для объемной и девиаторной составляющей тензора напряжений в терминах соответствующих потенциалов [11]
, (3.8)
где
(3.9)
Из (3.8), (3.9) следует, что в динамических задачах возмущение, связанное с девиатором напряжений, может распространяться либо со скоростью P-волны, если выполнены условия
, (3.10)
либо со скоростью S-волны, если
, (3.11)
либо часть девиатора может двигаться со скоростью P-волны, а другая со скоростью S-волны, если
(3.12)
- Динамические поля на линии действия силы. В случае пространственной внутренней задачи Лэмба поле напряжений на линии действия силы представимо в виде [14]
, (4.1)
где l – линия действия силы, n – единичный вектор, совпадающий с направлением действия силы, x = x × n – координата вдоль линии действия силы, f (x, t) – функция, описывающая распространение волнового фронта компоненты напряжений σnn вдоль оси x, g (x, t) – функция, описывающая распространение волнового фронта, связанного с компонентами, ортогональными к σnn. Заметим, что в силу осевой симметрии, тензор σ (x, t)|x ∈ l в выбранной системе координат не содержит касательных компонент.
Разложение поля напряжений (4.1) на шаровой и девиаторный тензор дает
(4.2)
Последнее выражение для девиатора показывает, что условие s (x, t) = 0 возможно только при выполнении условия
(4.3)
Однако, как показывает анализ аналитических выражений для усилий во внутренней задаче Лэмба от сосредоточенного силового источника [14, 16], условие (4.3) не выполняется ни при каких значениях коэффициента Пуассона ν ∈ (–1; 0.5) и ни при каких (временных) профилях рассматриваемой силовой нагрузки. Таким образом, на линии действия силовой особенности, вне зависимости от временного профиля волны, всегда присутствует девиаторная компонента s (x, t), причем эта девиаторная компонента не связана со сдвигами в горизонтальной плоскости.
Далее, остается заметить, что в фундаментальном решении Стокса для уравнений движения изотропной упругой среды присутствует векторный потенциал [35]
, (4.4)
где r = |x|, H – функция Хэвисайда, δ – функция Дирака. Непосредственная подстановка потенциала (4.4) в соответствующий оператор (3.9), показывает, что . Таким образом, обеспечивается условие существования S-волны на оси линии действия силы.
Выводы. Показано, что во внутренней задаче Лэмба для изотропного упругого полупространства на оси симметрии, определяемой линией действия силовой особенности, S-волна существует и не содержит касательных компонент тензора напряжений в декартовых координатах, одна из осей которых совпадает с линией действия силы.
Представляется, что полученные результаты могут найти применение, как в аналитических, так и в численных и экспериментальных исследованиях при определении волновых полей на линии действия силовых воздействий. Кроме того, появление S-волны на линии действия силовой особенности, представляет интерес с точки зрения формирования поверхностных волн и, в частности, волн Рэлея [25, 26], дисперсионных волн Рэлея–Лэмба [34, 36], а также волн Лява [37, 38].
Благодарность. Работа выполнена за счет гранта 24-49-02002 Российского научного фонда.
Авторлар туралы
A. Ilyashenko
Moscow State University of Civil Engineering
Хат алмасуға жауапты Автор.
Email: IlyashenkoAV@mgsu.ru
Ресей, Moscow
Әдебиет тізімі
- Nakano H. On Rayleigh waves // Japan J. Astron.&Geophys., 1925, vol. 2, pp. 233–326.
- Nakano H. Some problems concerning the propagations of the disturbances in and on semi-infinite elastic solid // Geophys. Mag., 1930, vol. 2, pp. 189–348.
- Fuchs K., Müller G. Computation of synthetic seismograms with the reflectivity method and comparison with observations // Geophys. J.R. Astr. Soc., 1971, vol. 23, pp. 417–433.
- Kennett B.L.N., Kerry N.J., Woodhouse J.H. Symmetries in the reflection and transmission of elastic waves // Geophys. J.R. Astr. Soc., 1978, vol. 52, pp. 215–230.
- Wang, D. et al. Ground surface response induced by shallow buried explosions // Earthquake Eng.&Eng. Vib., 2014, vol. 13, pp. 163–169.
- Cagniard L. Reflexion et Refraction des Ondes Seismiques Progressives. Paris: Gauthier-Villard, 1939.
- Lapwood E.R. The disturbance due to a line source in a semiinfinite elastic medium // Phil. Trans. R. Soc. London, Ser. A, 1949, vol. 242, pp. 63–100.
- Pekeris C.L. The seismic buried pulse // Proc. Nat. Acad. Sci., 1955, vol. 41, pp. 629–639.
- Garvin W.W. Exact transient solution of the buried line source problem // Proc. Roy. Soc. A, 1956, vol. 234, pp. 528–541.
- Pekeris C.L., Lifson H. Motion of the surface of a uniform elastic half-space produced by a burried pulse // J. Acoust. Soc. Am., 1957, vol. 29, pp. 1233–1238.
- Ewing W.M., Jardetzky W.S., Press F. Elastic Waves in Layered Media. N.Y.: McGraw-Hill, 1957.
- Payton R.G. Epicenter motion of an elastic half-space due to buried stationary and moving line sources // Int. J. Solids Struct., 1968, vol.4, pp. 287–300.
- Norwood F.R. Similarity solutions in plane elastodynamics // Int. J. Solids Struct., 1973, vol. 9(7), pp. 789–803.
- Johnson L.R. Green’s function for Lamb’s problem // Geophys. J.R. Astron. Soc., 1974, vol. 37, pp. 99–131.
- Payton R.G. Epicenter motion of a transversely isotropic elastic half-space due to a suddenly applied buried point source // Int. J. Engng. Sci., 1979, vol. 17, pp. 879–887.
- Poruchikov V.B. Methods of the Classical Theory of Elastodynamics. Berlin: Springer, 1993.
- Willams D.P., Craster R.V. Cagniard-de Hoop path perturbations with applications to nongeometric wave arrivals // J. Eng. Math., 2000, vol. 37, pp. 253–272.
- Sanchez-Sesma F, Iturraran-Viveros U. The classic Garvin’s problem revisited // Bull. Seismol. Soc. Am., 2006, vol. 96(4A), pp. 1344–1351.
- Sanchez-Sesma F, Iturraran-Viveros U., Kausel E. Garvin’s generalized problem revisited // Soil Dyn. Earthquake Eng., 2013, vol. 47, pp. 4–15.
- Feng X., Zhang H. Exact closed-form solutions for Lamb’s problem // Geophys. J. Int., 2018, vol. 214, pp. 444–459.
- Lamb H. On the propagation of tremors over the surface of an elastic solid // Philos. Trans. Roy. Soc. London A, 1904, vol. 203, pp. 1–42.
- Kuznetsov S.V. “Forbidden” planes for Rayleigh waves // Quart. Appl. Math., 2002, vol. 60, pp. 87–97.
- Kravtsov A.V. et al. Finite element models in Lamb’s problem // Mech. Solids, 2011, vol. 46, pp. 952–959.
- Kuznetsov S.V. Seismic waves and seismic barriers // Acoust. Phys., 2011, vol. 57, pp. 420–426.
- Terentjeva E.O. et al. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acoust. Phys., 2015, vol. 61, pp. 356–367.
- Il’yasov K.K. et al. Exterior 3D Lamb problem: Harmonic load distributed over a surface // Mech. of Solids, 2016, vol. 51, pp. 39–45.
- Li S. et al. Benchmark for three-dimensional explicit asynchronous absorbing layers for ground wave propagation and wave barriers // Comp. Geotech., 2021, vol. 131, Paper 103808.
- Dai Y., Yan S., Zhang B. Acoustic field excited by single force with arbitrary direction in semi-infinite elastic space // Acoust. Phys., 2019, vol. 65, pp. 235–245.
- Dai Y., Yan S., Zhang B. Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid // Chinese Phys. B, 2020, vol. 29, Paper 034304.
- Dai Y., Yan S., Zhang B. Research on ultrasonic multi-wave focusing and imaging method for linear phased arrays // Chinese Phys. B, 2021, vol. 30, Paper 074301.
- Auld B.A. Acoustic Fields and Waves in Solids. Malabar (Florida): Krieger Pub., 1990.
- Gurtin M.E. The linear theory of elasticity // in: Linear Theories of Elasticity and Thermoelasticity / Ed. by Truesdell C. Berlin;Heidelberg: Springer, 1973.
- Goldstein R.V. et al. The modified Cam-Clay (MCC) model: cyclic kinematic deviatoric loading // Arch. APl. Mech., 2016, vol. 86, pp. 2021–2031.
- Pao Y.-H., Gajewski R.R. The generalized ray theory and transient responses of layered elastic solids // Phys. Acoust., 1977, vol. 13, pp. 183–265.
- Kupradze V.D. The Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. Amsterdam: North-Holland, 1979.
- Ilyashenko A.V. et al. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russ. J. Nondestruct. Test., 2017, vol. 53, pp. 243–259.
- Kuznetsov S.V. Love waves in stratified monoclinic media // Quart. Appl. Math., 2004, vol. 62, pp. 749–766.
- Kuznetsov S.V. Love waves in layered anisotropic media // JAMM, 2006, vol. 70, pp. 116–127.
Қосымша файлдар
