The Fine Structure of the Density Field in Two-Dimensional Periodic Flows on the Surface of a Viscous Stratified Liquid
- Authors: Ochirov A.A.1, Chashechkin Y.D.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics of the RAS
- Issue: Vol 88, No 5 (2024)
- Pages: 679-691
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/280961
- DOI: https://doi.org/10.31857/S0032823524050031
- EDN: https://elibrary.ru/JQAPNX
- ID: 280961
Cite item
Abstract
In the linear approximation, the propagation of a periodic disturbance along the free surface of a viscous stratified fluid in a uniform gravitational field is considered, taking into account the action of surface tension. Complete solutions of the linearized system of fundamental equations of the mechanics of heterogeneous fluids, which determine the regular wave and singular ligament components, are obtained. The fine spatial structure of the fields of next physical variables: fluid velocity, momentum, density and density gradient are calculated.
Full Text

About the authors
A. A. Ochirov
Ishlinsky Institute for Problems in Mechanics of the RAS
Author for correspondence.
Email: otchirov@mail.ru
Russian Federation, Moscow
Yu. D. Chashechkin
Ishlinsky Institute for Problems in Mechanics of the RAS
Email: yulidch@gmail.com
Russian Federation, Moscow
References
- Stokes G.G. On the theory of oscillatory waves // Trans. Cam. Philos. Soc., 1847, vol. 8, pp. 441–455.
- Monismith S.G., Cowen E.A., Nepf H.M. et al. Laboratory observations of mean flows under surface gravity waves. // J. Fluid Mech., 2007, vol. 573, pp. 131–147. https://doi.org/10.1017/jfm.2019.891
- Plueddemann A.J., Weller R.A. Structure and evolution of the oceanic surface boundary layer during the surface waves processes program // J. of Marine Syst., 1999, vol. 21, no. 1–4, pp. 85–102. https://doi.org/10.1016/s0924-7963(99)00007-x
- Yan S., Zou Z., You Z. Eulerian description of wave-induced stokes drift effect on tracer transport // J. of Marine Sci.&Engng., 2022, vol. 10, no. 2, pp. 253.
- Subbaraya S., Breitenmoser A. Molchanov A. et al. Circling the seas: Design of Lagrangian drifters for ocean monitoring // IEEE Robotics&Autom. Mag., 2016, vol. 23, no. 4, pp. 42–53. https://doi.org/10.1109/MRA.2016.2535154
- Bosi S. Broström G., Roquet F. The role of Stokes drift in the dispersal of North Atlantic surface marine debris // Front. Mar. Sci., Sec. Marine Pollution, 2021, vol. 8. https://doi.org/10.3389/fmars.2021.697430
- Higgins C., Vanneste J., van den Bremer T.S. Unsteady Ekman–Stokes dynamics: Implications for surface wave-induced drift of floating marine litter // Geophys. Res. Lett., 2020, vol. 47, pp. e2020GL089189. https://doi.org/10.1029/2020GL089189
- Pizzo N., Melville W.K. Deike L. Lagrangian transport by nonbreaking and breaking deep-water waves at the ocean surface // J. Phys. Ocean, 2019, vol. 49, pp. 983–993. https://doi.org/10.1175/JPO-D-18-0227.1
- Gerstner F.J. Theorie der Wellen. Abhandlunger der Königlichen Böhmischen Geselschaft der Wissenschaften, Prague. 1802. Repr. in: Annalen der Physik. 1809, vol. 32, no. 8, pp. 412–445.
- Abrashkin A.A., Pelinovsky E.N. On the relation between Stokes drift and the Gerstner wave // Phys. Uspekhi, 2018, vol. 61, no. 3, pp. 307. https://doi.org/10.3367/UFNe.2017.03.038089
- Longuet-Higgins M.S. Mass transport in water waves // Phil. Trans. of the Roy. Soc. of London. A. Math.&Phys. Sci., 1953, vol. 245, no. 903, pp. 535–581. https://doi.org/10.1098/rsta.1953.0006
- Longuet-Higgins M.S., Stewart R.W. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’ // J. of Fluid Mech., 1962, vol. 13, no. 4, pp. 481–504. https://doi.org/10.1017/S0022112062000877
- Van Den Bremer T.S., Whittaker C., Calvert R. et al. Experimental study of particle trajectories below deep-water surface gravity wave groups. // J. of Fluid Mech., 2019, vol. 879, pp. 168–186. https://doi.org/10.1017/jfm.2019.584
- Il’ichev A.T., Savin A.S., Shashkov A.Y. Motion of particles in the field of nonlinear wave packets in a liquid layer under an ice cover // Theor.&Math. Phys., 2024, vol. 218, no. 3, pp. 503–514. https://doi.org/10.1134/S0040577924030097
- You Z.J., Wilkinson D.L., Nielsen P. Near bed net drift under waves // in: Proc. of the 10th Australasian Conf. on Coastal and Ocean Engineering, Auckland, New Zealand, 1991, Dec. 2–6, pp. 183–186.
- David H. Stokes drift in equatorial water waves, and wave–current interactions // Deep Sea Res. pt. II: Topical Studies in Oceanogr., 2019, vol. 160, pp. 41–47. https://doi.org/10.1016/j.dsr2.2018.08.003
- Bühler O. Waves and Mean Flows,.. Cambridge: Univ. Press, 2014. 374 p. https://doi.org/10.1017/CBO9781107478701
- McWilliams J.C., Restrepo J.M., Lane E.M. An asymptotic theory for the interaction of waves and currents in coastal waters // J. of Fluid Mech., 2004, vol. 511, pp. 135–178. https://doi.org/10.1017/S0022112004009358
- Leibovich S. The form and dynamics of Langmuir circulations // Annual Rev. of Fluid Mech., 1983, vol. 15, no. 1, pp. 391–427. https://doi.org/10.1146/annurev.fl.15.010183.002135
- Kinsman B. Wind Waves: Their Generation and Propagation on the Ocean’s Surface. Prentice Hall, 1965.
- Landau L.D., Lifshitz E.M. Fluid Mechanics. Course of Theoretical Physics Vol. 6. Oxford: Pergamon, 1987. 560 p.
- Kochin N.E., Kibel I.A., Roze N.V. Theoretical Hydromechanics. Moscow: Intersci. Pub., 1964. V. 1.
- Lamb H. Hydrodynamics. Cambridge: Univ. Press, 1924.
- Fedorov K.N. The Thermohaline Finestructure of the Ocean. Leningrad: Gidrometeoizdat, 1976. (in Russian)
- Rayleigh (Lord). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density // Proc. London Math. Soc., 1883, vol. s1–14, iss. 1, pp. 170–177. https://doi.org/10.1112/plms/s1-14.1.170
- Lighthill J. Waves in Fluids. Cambridge: Univ. Press, 1978. 524 p.
- Xu F., Li F., Zhang Y. The symmetry of steady stratified periodic gravity water waves // Monatshefte für Mathematik, 2024, vol. 203, no. 1, pp. 247–266. https://doi.org/10.1007/s00605-023-01904-4
- Baydulov V.G. On the problem of determining the position of a source of internal waves // Fluid Dyn., 2023, vol. 58, no. 7, pp. 1206–1212. https://doi.org/10.1134/S0015462823602085
- Knyazkov D.Y., Baydulov V.G., Savin A.S. et al. Direct and inverse problems of the dynamics of surface waves caused by the flow around an underwater obstacle // Fluid Dyn., 2023, vol. 58, no. 9, pp. 1725–1733. https://doi.org/10.1134/S0015462823603030
- Wang C.A., Zhang H., Zhu H.L. Numerical predictions of internal waves and surface thermal signatures by underwater vehicles in density-stratified water using OpenFOAM // Ocean Engng., 2023, vol. 272, pp. 113847. https://doi.org/10.1016/j.oceaneng.2023.113847
- More R.V., Ardekani A.M. Motion in stratified fluids // Annual Rev. of Fluid Mech., 2023, vol. 55, pp. 157–192. https://doi.org/10.1146/annurev-fluid-120720-011132
- Dore B.D. Mass transport in layered fluid systems // J. of Fluid Mech., 1970, vol. 40, no. 1, pp. 113–126. https://doi.org/10.1017/S0022112070000071
- Liu A.K., Davis S.H. Viscous attenuation of mean drift in water waves // J. of Fluid Mech., 1977, vol. 81, no. 1, pp. 63–84. https://doi.org/10.1017/S0022112077001918
- Robertson S., Rousseaux G. Viscous dissipation of surface waves and its relevance to analogue gravity experiments // http://arxiv.org/abs/1706.05255v3
- Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms, 2021, vol. 10, no. 4, pp. 286. https://doi.org/10.3390/axioms10040286
- Monismith S.G. Stokes drift: theory and experiments // J. of Fluid Mech., 2020, vol. 884, pp. F1. https://doi.org/10.1017/jfm.2019.891
- Chashechkin Y.D., Ochirov A.A. Periodic flows in a viscous stratified fluid in a homogeneous gravitational field // Mathematics, 2023, vol. 11, no. 21, pp. 4443. https://doi.org/10.3390/math11214443
- Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond // Ocean. Sci., 2018, vol. 14, pp. 471–502. https://doi.org/10.5194/os-14-471-2018
- Nayfeh A.H. Introduction to Perturbation Technique. N.Y.: Wiley, 1993. 536 p.
- Sedov L.I. Mechanics of Continuous Media. World Scientific, 1997.
- Barinov V.A. Distribution of waves on free surface of viscous liquid // Vestn. St.-Pb. univ., ser. 10. Prikl. Matem., Inform., Process Upravl., 2010, no. 2, pp. 18–31. (in Russian)
Supplementary files
