A unilateral discrete contact problem for a stratified elastic strip

Cover Page

Cite item

Full Text

Abstract

The problem is considered for the indentation of a stratified elastic strip by a rigid punch of finite dimension with a surface microrelief. Boundary variational formulations of the problem are given using the Poincaré-Steklov operator that maps normal stresses to normal displacements. To approximate this operator the discrete Fourier transform is used. The fast Fourier transform algorithms are applied for numerical realization. A variational formulation of a boundary value problem for transforms of displacements is used to calculate a transfer function. A quadratic programming problem with equality and inequality restrictions is obtained by approximating the original contact problem. To solve this problem numerically an algorithm based on the conjugate gradient method is used. Some regularities of contact interaction have been established.

Full Text

1. Введение. Одним из направлений повышения триботехнических характеристик контактирующих деталей машин и механизмов является использование функциональных покрытий. Среди существующих принципов создания покрытий перспективной является концепция многослойной архитектуры покрытий, так как подобные покрытия способны удовлетворять набору зачастую противоречивых требований. Разработан ряд технологий, позволяющих создавать композиции из чередующихся слоев функционально-градиентных материалов, представляющих собой гетерогенные структуры (композиты) с непрерывным изменением по глубине фазового состава и, как следствие, физико-механических свойств [1].

При исследовании локального контактного взаимодействия тел с покрытиями в качестве расчетной схемы, как правило, выбирается упругая полоса или слой, сцепленные с основанием. Учет поверхностного микрорельефа контактирующих тел в виде волнистости или шероховатости приводит к постановке задач дискретного (множественного) контакта [2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 6]. Подробный обзор современного состояния исследований в области механики дискретного контакта, включая основные подходы к постановке задач, методы аналитического и численного решения, конкретные результаты и области их практического использования, приведен в статье [7].

Задача дискретного контакта однородной упругой полосы с жестким штампом конечных размеров, имеющим поверхностный микрорельеф, рассмотрена в [8]. На поверхности возможного контакта полосы со штампом задавались условия одностороннего гладкого контакта. Отметим, что априори задавалась лишь предельно допустимая (номинальная) область контакта, которая включает в себя множество отдельных пятен фактического контакта, положение и размеры которых заранее неизвестны и подлежат определению. Вследствие этого задачи одностороннего контакта являются нелинейными. Наиболее распространенный подход к решению такого класса задач состоит в применении вариационных методов [9 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 11].

В [8] с использованием оператора Пуанкаре MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ Стеклова (ОПС) получены граничные вариационные формулировки и на их основе разработан вычислительный алгоритм решения задач одностороннего дискретного контакта для однородной упругой полосы. В настоящей работе этот алгоритм обобщен на случай стратифицированной упругой полосы. Предлагаемое обобщение состоит в использовании для построения ОПС численного алгоритма, разработанного в [12].

2. Постановка задачи. Пусть невесомая стратифицированная упругая полоса в прямоугольной системе координат O x 1 x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiaadIhada WgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa8xmaaqabaGccaWG 4bWaaSbaaSqaaiaa=jdaaeqaaaaa@41B8@  занимает область Ω={x=( x 1 , x 2 ) 2 : x 1 ,0 x 2 h} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeuyQdCLaeyypa0 tefqvATv2CG4uz3bIuV1wyUbacfaGaa83EaGqbbiaa+HhacqGH9aqp caWFOaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaS baaSqaaiaaikdaaeqaaOGaa8xkaiabgIGioprr1ngBPrwtHrhAYaqe guuDJXwAKbstHrhAGq1DVbacgeGae0xhHi1aaWbaaSqabeaacaWFYa aaaOGaa8NoaiaaykW7caaMe8+aaqWaaeaacaWG4bWaaSbaaSqaaiaa igdaaeqaaaGccaGLhWUaayjcSdGaeyizImQaeyOhIuQaaiilaiaays W7caaMe8Uaa8hmaiabgsMiJkaadIhadaWgaaWcbaGaaGOmaaqabaGc cqGHKjYOcaWGObGaa8xFaaaa@6D8D@  и состоит из произвольного числа N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOtaaaa@386A@  изотропных упругих слоев Ω n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xQdC1aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbciaa+5gaaeqaaaaa@3FD2@ , границы раздела которых параллельны оси O x 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taiaadIhada WgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa8xmaaqabaaaaa@3FD2@ . Слои пронумерованы как 1,,N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGymaiaacYcacq WIMaYscaGGSaGaamOtaaaa@3BA7@  в порядке возрастания координаты x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaaaaa@3EFF@ . Границу полосы x 2 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEamaaBaaale aacaaIYaaabeaakiabggMi6grbuLwBLnhiov2DGi1BTfMBaGqbaiaa =bdaaaa@418C@  обозначим Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdC0aaSbaaS qaaiaaicdaaeqaaaaa@39E5@ , границу раздела слоев Ω n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xQdC1aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbciaa+5gaaeqaaaaa@3FD2@  и Ω n+1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xQdC1aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbciaa+5gacaGFRaacfaGa a0xmaaqabaaaaa@413A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  через Γ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdC0aaSbaaS qaaiaad6gaaeqaaaaa@3A1E@ , а границу полосы x 2 h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEamaaBaaale aacaaIYaaabeaakiabggMi6kaadIgaaaa@3C3C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  через Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdC0aaSbaaS qaaiaad6eaaeqaaaaa@39FE@ . Параметры Ламе материала полосы являются произвольными ограниченными функциями координаты x 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaaaaa@3EFF@ : λ=λ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83UdWMaey ypa0Jae83UdWMaaiikaiaadIhadaWgaaWcbaqefqvATv2CG4uz3bIu V1wyUbacfaGaa4NmaaqabaGccaGGPaaaaa@44CF@  и μ=μ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hVd0Maey ypa0Jae8hVd0MaaiikaiaadIhadaWgaaWcbaqefqvATv2CG4uz3bIu V1wyUbacfaGaa4NmaaqabaGccaGGPaaaaa@44D3@ , имеющими разрывы первого рода на границах Γ n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdC0aaSbaaS qaaiaad6gaaeqaaaaa@3A1E@  раздела слоев. Из физических соображений следует, что существуют постоянные λ 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83UdW2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+bdaaeqaaOGaeyOp a4JaaGimaaaa@4184@  и μ 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hVd02aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+bdaaeqaaOGaeyOp a4JaaGimaaaa@4186@ , такие, что

λ( x 2 ) λ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83UdWMaai ikaiaadIhadaWgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa4Nm aaqabaGccaGGPaGaeyyzImRae83UdW2aaSbaaSqaaiaa+bdaaeqaaa aa@466B@ , μ( x 2 ) μ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hVd0Maai ikaiaadIhadaWgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa4Nm aaqabaGccaGGPaGaeyyzImRae8hVd02aaSbaaSqaaiaa+bdaaeqaaa aa@466F@ , 0 x 2 h MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGimaiabgsMiJk aadIhadaWgaaWcbaGaaGOmaaqabaGccqGHKjYOcaWGObaaaa@3E97@  (2.1)

Далее под u (n) (x), ε (n) (x), σ (n) (x) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xDamaaCaaaleqabaGaaiikaiaad6gacaGGPaaa aOGaaiikaiaa=HhacaGGPaGaaiilaiaaysW7iiqacqGF1oqzdaahaa WcbeqaaiaacIcacaWGUbGaaiykaaaakiaacIcacaWF4bGaaiykaiaa cYcacaaMe8Uae43Wdm3aaWbaaSqabeaacaGGOaGaamOBaiaacMcaaa GccaGGOaGaa8hEaiaacMcaaaa@547D@  будем понимать соответственно вектор перемещений и тензоры деформаций и напряжений в точке x Ω n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8hEaiabgIGioJGaaiab+L6axnaaBaaaleaaiuGa caqFUbaabeaaaaa@425B@ .

Для упрощения обозначений всюду, где это возможно, говоря о параметрах, относящихся к конкретному слою, будем опускать индекс, указывающий номер слоя.

Предполагается, что упругая полоса находится в условиях плоской деформации, деформации малы, а массовые силы и напряжения в недеформированном состоянии отсутствуют. Напряженно-деформированное состояние слоев Ω n , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xQdC1aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbciaa+5gaaeqaaOGaaiil aaaa@408C@   n= 1,N ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfiGaa8NBaiaa=1dadaqdaaqaaiaaigdacaGGSaGaa8Nt aaaacaGGSaaaaa@41CE@  описывается системой уравнений:

ε=defu MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae8xTduMaey ypa0tefqvATv2CG4uz3bIuV1wyUbacfaGaa4hzaiaa+vgacaGFMbGa aGjcVlaayIW7iuqacaqF1baaaa@46AA@ , σ=S:ε MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae83WdmNaey ypa0tefqvATv2CG4uz3bIuV1wyUbacfeGaa43uaiaacQdacqWF1oqz aaa@4327@ , divσ=0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfaGaa8hzaiaa=LgacaWF2bGaaGPaVJGabiab+n8aZjab g2da9iaaicdaaaa@44FC@  в Ω n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xQdC1aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbciaa+5gaaeqaaaaa@3FD2@ , (2.2)

где def1/2(grad+gra d T ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfaGaa8hzaiaa=vgacaWFMbGaeyyyIORaaGymaiaac+ca caaIYaGaaGPaVlaacIcacaWFNbGaa8NCaiaa=fgacaWFKbGaey4kaS Iaa83zaiaa=jhacaWFHbGaa8hzamaaCaaaleqabaGaa8hvaaaakiaa cMcaaaa@4FDF@ , S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83uaaaa@3DF9@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  тензор модулей упругости.

По границе Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdC0aaSbaaS qaaiaaicdaaeqaaaaa@39E5@  полоса соединена с недеформируемым основанием. В случае полного сцепления граничные условия имеют вид

u 1 = u 2 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGjcVlaadwhada WgaaWcbaGaaGymaaqabaGccqGH9aqpcaaMi8UaaGPaVlaadwhadaWg aaWcbaGaaGOmaaqabaGccqGH9aqpcaaIWaaaaa@42E2@  на Γ 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdC0aaSbaaS qaaiaaicdaaeqaaaaa@39E6@  (2.3)

На границах раздела слоев также задаются условия полного сцепления:

u 1 (n) = u 1 (n+1) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGjcVlaadwhada qhaaWcbaGaaGymaaqaaiaacIcacaWGUbGaaiykaaaakiabg2da9iaa yIW7caaMc8UaamyDamaaDaaaleaacaaIXaaabaGaaiikaiaad6gacq GHRaWkcaaIXaGaaiykaaaakiaacYcaaaa@4808@   u 2 (n) = u 2 (n+1) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGjcVlaadwhada qhaaWcbaGaaGOmaaqaaiaacIcacaWGUbGaaiykaaaakiabg2da9iaa yIW7caaMc8UaamyDamaaDaaaleaacaaIYaaabaGaaiikaiaad6gacq GHRaWkcaaIXaGaaiykaaaakiaacYcaaaa@480A@   σ 12 (n) = σ 12 (n+1) , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGjcVJGaaiab=n 8aZnaaDaaaleaacaaIXaGaaGOmaaqaaiaacIcacaWGUbGaaiykaaaa kiabg2da9iaayIW7caaMc8Uae83Wdm3aa0baaSqaaiaaigdacaaIYa aabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaakiaacYcaaaa@4B12@   σ 22 (n) = σ 22 (n+1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaaGjcVJGaaiab=n 8aZnaaDaaaleaacaaIYaGaaGOmaaqaaiaacIcacaWGUbGaaiykaaaa kiabg2da9iaayIW7caaMc8Uae83Wdm3aa0baaSqaaiaaikdacaaIYa aabaGaaiikaiaad6gacqGHRaWkcaaIXaGaaiykaaaaaaa@4A5A@  на Γ n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdC0aaSbaaS qaaiaad6gaaeqaaaaa@3A1F@  (2.4)

В упругую полосу вдавливается гладкий жесткий штамп, основание которого имеет поверхностный микрорельеф. Часть границы Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdC0aaSbaaS qaaiaad6eaaeqaaaaa@39FE@ , по которой возможен контакт полосы со штампом, обозначается Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@ . Положение и предельные размеры Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@ , т.е. номинальная область контакта, задаются априори, исходя из геометрических соображений. Предполагается, что часть границы Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  является односвязной и конечной. При вдавливании штампа с поверхностным микрорельефом номинальная область контакта Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  включает в себя множество отдельных пятен фактического контакта, положение и размеры которых заранее неизвестны.

Форма основания штампа и его поверхностный микрорельеф описываются функцией Φ( x 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdyKaaG jcVlaaygW7ruavP1wzZbItLDhis9wBH5gaiuaacaGFOaGaamiEamaa BaaaleaacaGFXaaabeaakiaa+Lcaaaa@44F2@ , значение которой в точке x Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8hEaiabgIGioJGaaiab+n5ahnaaBaaaleaacaWG Wbaabeaaaaa@422E@  равно расстоянию от этой точки до поверхности штампа, измеренному вдоль направления внешней нормали к границе Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@ . Расстояние Φ( x 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdyKaaG jcVhrbuLwBLnhiov2DGi1BTfMBaGqbaiaa+HcacaWG4bWaaSbaaSqa aiaa+fdaaeqaaOGaa4xkaaaa@4368@  отсчитывается по отношению к недеформированному состоянию полосы. Для определенности будем полагать min x Γ p Φ( x 1 )=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaCbeaeaaruavP1 wzZbItLDhis9wBH5gaiuaacaWFTbGaa8xAaiaa=5gaaSqaaGqbbiaa +HhacqGHiiIZiiaacqqFtoWrdaWgaaadbaGaamiCaaqabaaaleqaaO Gae0NPdyKaaGjcVlaa=HcacaWG4bWaaSbaaSqaaiaa=fdaaeqaaOGa a8xkaiabg2da9iaa=bdaaaa@4D41@ . Для штампа с поверхностным микрорельефом функция Φ( x 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdyKaaG jcVhrbuLwBLnhiov2DGi1BTfMBaGqbaiaa+HcacaWG4bWaaSbaaSqa aiaa+fdaaeqaaOGaa4xkaaaa@4368@  является мультимодальной (многоэкстремальной). Положение штампа определяется вектором перемещений δ=( δ 1 , δ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae8hTdqMaey ypa0tefqvATv2CG4uz3bIuV1wyUbacfaGaa4hkaGGaaiab9r7aKnaa BaaaleaacaGFXaaabeaakiaacYcacqqF0oazdaWgaaWcbaGaa4Nmaa qabaGccaGFPaaaaa@46EB@  и углом поворота φ 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NXdO2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+ndaaeqaaaaa@3FC5@  штампа как жесткого целого. Перемещения и углы поворота штампа предполагаются малыми. Главный вектор F=( F 1 , F 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8Nraiabg2da9Gqbaiaa+HcacaWGgbWaaSbaaSqa aiaa+fdaaeqaaOGaaiilaiaadAeadaWgaaWcbaGaa4NmaaqabaGcca GFPaaaaa@4465@  и главный момент M 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFZaaabeaaaaa@3ED6@  внешних сил, приложенных к штампу, считаются заданными. В качестве центра приведения выбирается точка x c =( x 1 c , x 2 c ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8hEamaaCaaaleqabaGaam4yaaaakiabg2da9Gqb aiaa+HcacaWG4bWaa0baaSqaaiaa+fdaaeaacaWGJbaaaOGaaiilai aadIhadaqhaaWcbaGaa4NmaaqaaiaadogaaaGccaGFPaaaaa@47EC@ . Далее рассматривается задача нормального контакта упругой полосы со штампом, поэтому будем полагать

δ 1 =0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hTdq2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdaaeqaaOGaeyyp a0Jaa4hmaiaa+Xcaaaa@4217@   F 1 =0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOramaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabeaakiabg2da9iaa =bdacaWFSaaaaa@413B@   < F 2 <0, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyOhIuQaeyipaW JaamOramaaBaaaleaaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaa beaakiaa=XdacaWFWaGaa8hlaaaa@4368@   M 3 < MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaqWaaeaacaWGnb WaaSbaaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa=ndaaeqaaaGc caGLhWUaayjcSdGaa8hpaiabg6HiLcaa@4430@

Контактное взаимодействие упругой полосы со штампом описывается линеаризованными условиями одностороннего гладкого контакта:

u 2 Φ+ δ 2 +( x 1 x 1 c ) φ 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyDamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaakiabgsMiJIGa aiab+z6agjabgUcaRiab+r7aKnaaBaaaleaacaWFYaaabeaakiabgU caRiaa=HcacaGG4bWaaSbaaSqaaiaa=fdaaeqaaOGaeyOeI0IaamiE amaaDaaaleaacaWFXaaabaGaam4yaaaakiaa=LcacqGFgpGAdaWgaa WcbaGaa83maaqabaaaaa@500E@ , σ 22 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83Wdm3aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdacaGFYaaabeaa kiabgsMiJkaa+bdaaaa@42EB@ , σ 12 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83Wdm3aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdacaGFYaaabeaa kiabg2da9iaa+bdaaaa@423B@

σ 22 [ u 2 Φ δ 2 ( x 1 x 1 c ) φ 3 ]=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83Wdm3aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdacaGFYaaabeaa kiaa+TfacaWG1bWaaSbaaSqaaiaa+jdaaeqaaOGaeyOeI0Iae8NPdy KaeyOeI0Iae8hTdq2aaSbaaSqaaiaa+jdaaeqaaOGaeyOeI0Iaa4hk aiaacIhadaWgaaWcbaGaa4xmaaqabaGccqGHsislcaWG4bWaa0baaS qaaiaa+fdaaeaacaWGJbaaaOGaa4xkaiab=z8aQnaaBaaaleaacaGF Zaaabeaakiaa+1facqGH9aqpcaGFWaaaaa@5628@  на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  (2.5)

Остальная часть границы Γ N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeu4KdC0aaSbaaS qaaiaad6eaaeqaaaaa@39FE@  полосы свободна от внешних нагрузок:

σ 21 = σ 22 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83Wdm3aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdacaGFXaaabeaa kiabg2da9iab=n8aZnaaBaaaleaacaGFYaGaa4NmaaqabaGccqGH9a qpcaGFWaaaaa@4699@  на Γ N \ Γ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbciaa+5eaaeqaaOGaaiix aiab=n5ahnaaBaaaleaacaWGWbaabeaaaaa@42F8@  (2.6)

Уравнения равновесия жесткого штампа имеют вид:

Γ p σ 22 d Γ p = F 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaa8quaeaaiiaacq WFdpWCdaWgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa4Nmaiaa +jdaaeqaaaqaaiab=n5ahnaaBaaameaacaWGWbaabeaaaSqab0Gaey 4kIipakiaayIW7caWGKbGaaGjcVlab=n5ahnaaBaaaleaacaWGWbaa beaakiabg2da9iaadAeadaWgaaWcbaGaa4Nmaaqabaaaaa@4E9B@ , Γ p ( x 1 x 1 c ) σ 22 d Γ p = M 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaa8quaeaacaaMi8 EefqvATv2CG4uz3bIuV1wyUbacfaGaa8hkaiaacIhadaWgaaWcbaGa a8xmaaqabaGccqGHsislcaWG4bWaa0baaSqaaiaa=fdaaeaacaWGJb aaaOGaa8xkaGGaaiab+n8aZnaaBaaaleaacaWFYaGaa8Nmaaqabaaa baGae43KdC0aaSbaaWqaaiaadchaaeqaaaWcbeqdcqGHRiI8aOGaam izaiaayIW7cqGFtoWrdaWgaaWcbaGaamiCaaqabaGccqGH9aqpcaWG nbWaaSbaaSqaaiaa=ndaaeqaaaaa@5595@   (2.7)

Отметим, что соотношения (2.7), по существу, представляют собой нелокальные граничные условия.

Для существования решения рассматриваемой контактной задачи далее будем предполагать, что внешние силы и моменты, приложенные к жесткому штампу, согласованы между собой таким образом, что существует распределение нормальных напряжений σ 22 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83Wdm3aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdacaGFYaaabeaa kiabgsMiJkaa+bdaaaa@42EB@  на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@ , удовлетворяющее уравнениям равновесия штампа (2.7).

Для выделения класса единственности решения в рассматриваемой контактной задаче используется условие конечности потенциальной энергии деформации упругой полосы [13]:

Ω σ:ε dΩ< MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaa8quaeaaiiqacq WFdpWCruavP1wzZbItLDhis9wBH5gaiuaacaGF6aGae8xTdugaleaa iiaacqqFPoWvaeqaniabgUIiYdGccaaMi8UaaGPaVlaadsgacaaMi8 Uae0xQdCLaeyipaWJaeyOhIukaaa@4EBE@  (2.8)

Задача (в дифференциальной постановке) состоит в определении полей перемещений u (n) (x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xDamaaCaaaleqabaacfaGaa4hkaiaad6gacaGF PaaaaOGaa4hkaiaa=HhacaGFPaaaaa@42EC@ , деформаций ε (n) (x) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae8xTdu2aaW baaSqabeaaruavP1wzZbItLDhis9wBH5gaiuaacaGFOaGaamOBaiaa +LcaaaGccaGFOaacfeGaa0hEaiaa+Lcaaaa@43A2@  и напряжений σ (n) (x) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae83Wdm3aaW baaSqabeaaruavP1wzZbItLDhis9wBH5gaiuaacaGFOaGaamOBaiaa +LcaaaGccaGFOaacfeGaa0hEaiaa+Lcaaaa@43BE@ , n= 1,N ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfiGaa8NBaiaa=1dadaqdaaqaaiaaigdacaGGSaGaa8Nt aaaacaGGSaaaaa@41CE@  удовлетворяющих уравнениям (2.2), граничным условиям (2.3) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (2.6), уравнениям равновесия штампа (2.7) и условию (2.8). Также необходимо найти смещение δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hTdq2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaaaa@3FAC@  и поворот φ 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NXdO2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+ndaaeqaaaaa@3FC5@  штампа. Подчеркнем, что в рассматриваемой задаче одностороннего дискретного контакта априори задается лишь номинальная область контакта Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@ , положение и размеры пятен фактического контакта заранее неизвестны и подлежат определению в процессе решения задачи.

3. Интегральное представление решения. Рассмотрим вспомогательную краевую задачу для стратифицированной упругой полосы Ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xQdCfaaa@392A@ : найти поля перемещений u (n) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xDamaaCaaaleqabaacfaGaa4hkaiaad6gacaGF Paaaaaaa@4098@ , n= 1,N ¯ , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfiGaa8NBaiaa=1dadaqdaaqaaiaaigdacaGGSaGaa8Nt aaaacaGGSaaaaa@41CE@  удовлетворяющие уравнениям (2.2), граничным условиям (2.3), (2.4) и (2.6), условию (2.8), а также граничным условиям

σ 21 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83Wdm3aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdacaGFXaaabeaa kiabg2da9iaa+bdaaaa@423B@ , σ 22 =q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83Wdm3aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdacaGFYaaabeaa kiabg2da9iaadghaaaa@4282@  на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A24@

Из результатов [13 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 16] следует, что если выполняются условия (2.1), то для любого q L 2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaiabgIGiol aadYeadaWgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa8Nmaaqa baGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaaeqaaOGaa8xkaa aa@4541@  данная задача имеет единственное решение, которое может быть представлено в виде

u(x)= Γ p g(x, ξ 1 )q( ξ 1 )d ξ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xDaGqbaiaa+HcacaWF4bGaa4xkaiabg2da9maa pefabaGaa83zaiaa+HcacaWF4bGaaiilaGGaaiab957a4naaBaaale aacaGFXaaabeaakiaa+LcacaWGXbGaa4hkaiab957a4naaBaaaleaa caGFXaaabeaakiaa+LcacaWGKbGaaGzaVlab957a4naaBaaaleaaca GFXaaabeaaaeaacqqFtoWrdaWgaaadbaGaamiCaaqabaaaleqaniab gUIiYdaaaa@56C9@ ; x Ω n MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8hEaiabgIGioJGaaiab+L6axnaaBaaaleaaiuGa caqFUbaabeaaaaa@425B@ , n= 1,N ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfiGaa8NBaiaa=1dadaqdaaqaaiaaigdacaGGSaGaa8Nt aaaaaaa@411E@ , (3.1)

где g(x, ξ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83zaGqbaiaa+HcacaWF4bGaaiilaGGaaiab957a 4naaBaaaleaacaGFXaaabeaakiaa+Lcaaaa@43C1@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  ядро интегрального представления, которое может быть интерпретировано как поле перемещений MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  решение краевой задачи о действии нормальной сосредоточенной единичной силы, приложенной в точке x=( ξ 1 ,h) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8hEaiaa=1dacaWFOaaccaGae4NVdG3aaSbaaSqa aGqbaiaa9fdaaeqaaOGaa0hlaGqbciaa8HgacaqFPaaaaa@4487@  границы Γ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A24@  стратифицированной упругой полосы Ω MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xQdCfaaa@392A@ .

Решение (3.2) вспомогательной краевой задачи удовлетворяет всем условиям сформулированной в разд. 2 задачи одностороннего дискретного контакта, кроме условий одностороннего гладкого контакта (2.5) и условий равновесия штампа (2.7). Поэтому использование интегрального представления (3.1) позволяет свести решение рассматриваемой контактной задачи к нахождению на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A24@  нормальных напряжений q= σ 22 L 2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaiabg2da9G Gaaiab=n8aZnaaBaaaleaaruavP1wzZbItLDhis9wBH5gaiuaacaGF YaGaa4NmaaqabaGccqGHiiIZcaWGmbWaaSbaaSqaaiaa+jdaaeqaaO Gaa4hkaiab=n5ahnaaBaaaleaacaWGWbaabeaakiaa+Lcaaaa@499D@ , удовлетворяющих следующей системе уравнений и неравенств:

q0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaiabgsMiJg rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=bdaaaa@4080@  на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  (3.2)

u 2 (q)Φ+ δ 2 +( x 1 x 1 c ) φ 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyDamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaakiaa=HcacaWG XbGaa8xkaiabgsMiJIGaaiab+z6agjabgUcaRiab+r7aKnaaBaaale aacaWFYaaabeaakiabgUcaRiaa=HcacaWG4bWaaSbaaSqaaiaa=fda aeqaaOGaeyOeI0IaamiEamaaDaaaleaacaWFXaaabaGaam4yaaaaki aa=LcacqGFgpGAdaWgaaWcbaGaa83maaqabaaaaa@5258@  на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  (3.3)

q[ u 2 (q)Φ δ 2 ( x 1 x 1 c ) φ 3 ]=0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=TfacaWG1bWaaSbaaSqaaiaa=jdaaeqa aOGaa8hkaiaadghacaWFPaGaeyOeI0cccaGae4NPdyKaeyOeI0Iae4 hTdq2aaSbaaSqaaiaa=jdaaeqaaOGaeyOeI0Iaa8hkaiaadIhadaWg aaWcbaGaa8xmaaqabaGccqGHsislcaWG4bWaa0baaSqaaiaa=fdaae aacaWGJbaaaOGaa8xkaiab+z8aQnaaBaaaleaacaWFZaaabeaakiaa =1facqGH9aqpcaWFWaaaaa@5617@  на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  (3.4)

Γ p q d Γ p = F 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaa8quaeaacaWGXb aaleaaiiaacqWFtoWrdaWgaaadbaGaamiCaaqabaaaleqaniabgUIi YdGccaaMi8UaamizaiaayIW7cqWFtoWrdaWgaaWcbaGaamiCaaqaba GccqGH9aqpcaWGgbWaaSbaaSqaaerbuLwBLnhiov2DGi1BTfMBaGqb aiaa+jdaaeqaaaaa@4C4E@ , Γ p ( x 1 x 1 c )q d Γ p = M 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaa8quaeaacaaMi8 EefqvATv2CG4uz3bIuV1wyUbacfaGaa8hkaiaadIhadaWgaaWcbaGa a8xmaaqabaGccqGHsislcaWG4bWaa0baaSqaaiaa=fdaaeaacaWGJb aaaOGaa8xkaiaadghaaSqaaGGaaiab+n5ahnaaBaaameaacaWGWbaa beaaaSqab0Gaey4kIipakiaadsgacaaMi8Uae43KdC0aaSbaaSqaai aadchaaeqaaOGaeyypa0JaamytamaaBaaaleaacaWFZaaabeaaaaa@5348@ , (3.5)

где u 2 (q) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyDamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaakiaa=HcacaWG XbGaa8xkaaaa@414F@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  нормальные перемещения на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A24@ , соответствующие нормальным напряжениям q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaaaa@388E@ .

4. Оператор Пуанкаре MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfeqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A1A@ Стеклова. Для решения системы (3.2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (3.5) построим ОПС S ps :qw MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaBaaale aacaWGWbGaam4CaaqabaqefqvATv2CG4uz3bIuV1wyUbacfaGccaWF 6aGaamyCaiablAAiHjaadEhaaaa@4485@ , отображающий посредством решения (3.1) нормальные напряжения q( x 1 ) σ 22 ( x 1 ,h) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacaWG4bWaaSbaaSqaaiaa=fdaaeqa aOGaa8xkaiabggMi6IGaaiab+n8aZnaaBaaaleaacaWFYaGaa8Nmaa qabaGccaWFOaGaamiEamaaBaaaleaacaWFXaaabeaakiaacYcacaWG ObGaa8xkaaaa@4B53@  на части Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  границы упругой полосы в нормальные перемещения w( x 1 ) u 2 ( x 1 ,h) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4DaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacaWG4bWaaSbaaSqaaiaa=fdaaeqa aOGaa8xkaiabggMi6kaadwhadaWgaaWcbaGaa8NmaaqabaGccaWFOa GaamiEamaaBaaaleaacaWFXaaabeaakiaacYcacaWGObGaa8xkaaaa @49D9@  на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@ .

Соответствующее решению (3.1) представление ОПС S ps :qw MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaBaaale aacaWGWbGaam4CaaqabaqefqvATv2CG4uz3bIuV1wyUbacfaGccaWF 6aGaamyCaiablAAiHjaadEhaaaa@4485@  для q L 2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaiabgIGiol aadYeadaWgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa8Nmaaqa baGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaaeqaaOGaa8xkaa aa@4541@  имеет вид:

w( x 1 )= Γ p g ps ( x 1 ξ 1 )q( ξ 1 )d ξ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4DaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacaWG4bWaaSbaaSqaaiaa=fdaaeqa aOGaa8xkaiabg2da9maapefabaGaam4zamaaBaaaleaacaWGWbGaam 4CaaqabaGccaWFOaGaamiEamaaBaaaleaacaWFXaaabeaakiabgkHi TGGaaiab+57a4naaBaaaleaacaWFXaaabeaakiaa=LcacaWGXbGaa8 hkaiab+57a4naaBaaaleaacaWFXaaabeaakiaa=LcacaWGKbGaaGza Vlab+57a4naaBaaaleaacaWFXaaabeaaaeaacqGFtoWrdaWgaaadba GaamiCaaqabaaaleqaniabgUIiYdaaaa@5B0A@  (4.1)

Выражение в явном виде ядра g ps () MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4zamaaBaaale aacaWGWbGaam4CaaqabaqefqvATv2CG4uz3bIuV1wyUbacfaGccaWF OaGaeyyXICTaa8xkaaaa@43D0@  интегрального представления (4.1) для произвольной стратифицированной упругой полосы неизвестно. Правая часть (4.1) является интегральным оператором типа свертки, поэтому с помощью интегрального преобразования Фурье по координате x 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabeaaaaa@3EFF@  можно получить алгебраическое соотношение, связывающее трансформанты нормальных перемещений w ˜ (α) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4Dayaaiaqefq vATv2CG4uz3bIuV1wyUbacfaGaa8hkaGGaaiab+f7aHjaa=Lcaaaa@4125@  и нормальных напряжений q ˜ (α) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmyCayaaiaqefq vATv2CG4uz3bIuV1wyUbacfaGaa8hkaGGaaiab+f7aHjaa=Lcaaaa@411F@

w ˜ (α)= g ˜ ps (α) q ˜ (α) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabm4Dayaaiaqefq vATv2CG4uz3bIuV1wyUbacfaGaa8hkaGGaaiab+f7aHjaa=LcacaWF 9aacfiGab03zayaaiaWaaSbaaSqaaiaadchacaWGZbaabeaakiaa=H cacqGFXoqycaWFPaGab0xCayaaiaGaa8hkaiab+f7aHjaa=Lcaaaa@4BE1@ , (4.2)

где α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xSdegaaa@393C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  параметр преобразования Фурье, g ˜ ps (α) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfiGab83zayaaiaWaaSbaaSqaaiaadchacaWGZbaabeaa iuaakiaa+HcaiiaacqqFXoqycaGFPaaaaa@4340@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  трансформанта ядра интегрального представления (4.1). Таким образом действие ОПС S ps MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaBaaale aacaWGWbGaam4Caaqabaaaaa@3A89@  сводится к выполнению прямого и обратного преобразований Фурье и перемножению трансформант.

5. Передаточная функция оператора Пуанкаре MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfeqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A1A@ Стеклова. Функцию g ˜ ps (α) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfiGab83zayaaiaWaaSbaaSqaaiaadchacaWGZbaabeaa iuaakiaa+HcaiiaacqqFXoqycaGFPaaaaa@4340@ , следуя [17], будем называть передаточной функцией. В случае однородной полосы выражение для передаточной функции может быть получено аналитически [13]. Для функционально-градиентной полосы эту функцию удается построить с помощью численно-аналитической методики при специальной зависимости ее упругих свойств по толщине, в частности степенной или экспоненциальной зависимости [4]. В случае произвольного закона изменения упругих свойств по толщине используются приближенные подходы, основанные как на прямом численном интегрировании краевых задач для систем дифференциальных уравнений по поперечной координате [15, 17], так и на замене неоднородной полосы многослойной с кусочно-постоянной зависимостью упругих модулей от координаты и сведении задачи к решению систем функциональных уравнений [16].

Вычислительные проблемы, возникающие при реализации таких подходов, обусловлены наличием экспоненциальных составляющих у фундаментальных решений соответствующих систем дифференциальных уравнений. Это приводит к плохой обусловленности систем линейных алгебраических уравнений, возникающих при удовлетворении граничных условий, и к неустойчивости численных процедур решения задач Коши и их дискретных аналогов. Распространенным способом преодоления указанных трудностей является выделение в явном виде экспоненциальных составляющих, в результате чего проблема сводится к отысканию функций ограниченной вариации. Такой способ лежит в основе метода модулирующих функций [18].

В настоящей работе для построения передаточной функции применялся альтернативный подход [12], опирающийся на использование вариационной формулировки краевой задачи для трансформант перемещений. Аппроксимация вариационных уравнений производилась методом конечных элементов. Для численного решения задачи использован нестационарный итерационный метод, на каждом шаге которого методом прогонки решались две системы линейных алгебраических уравнений с трехдиагональными матрицами. Разработан алгоритм выбора последовательности параметров итерационного метода, обеспечивающей его сходимость для любых значений параметра преобразования Фурье α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xSdegaaa@393C@ .

В [12] проведена верификация разработанного вычислительного алгоритма для непрерывно-неоднородных полос, параметры Ламе материала которой являлись экспоненциальными функциями, и кусочно-однородных полос с полностью сцепленными слоями. Также в [12] даны рекомендации по использованию адаптивных конечно-элементных сеток.

При решении задач дискретного контакта требуется вычислять значения передаточной функции ОПС в достаточно широком диапазоне изменения параметра преобразования Фурье α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xSdegaaa@393C@  [8]. С целью уменьшения вычислительных затрат в настоящей работе для больших значений параметра α MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xSdegaaa@393C@  применялся алгоритм, использующий полученное в [19] трехчленное асимптотическое разложение передаточной функции и построенные на его основе аппроксимации Паде.

6. Вариационная формулировка задачи. Для решения системы (3.2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (3.5), содержащей уравнения и неравенства, используется вариационный подход [9]. Введем необходимые для построения вариационных формулировок задачи функциональные пространства MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  гильбертов триплет H 1/2 ( Γ p ) L 2 ( Γ p ) H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaCaaale qabaqefqvATv2CG4uz3bIuV1wyUbacfaGaa8xmaiaac+cacaWFYaaa aOGaa8hkaGGaaiab+n5ahnaaBaaaleaacaWGWbaabeaakiaa=Lcacq GHckcZcaWGmbWaaSbaaSqaaiaa=jdaaeqaaOGaa8hkaiab+n5ahnaa BaaaleaacaWGWbaabeaakiaa=LcacqGHckcZceWGibGbaGaadaahaa WcbeqaaiabgkHiTiaa=fdacaGGVaGaa8Nmaaaakiaa=HcacqGFtoWr daWgaaWcbaGaamiCaaqabaGccaWFPaaaaa@55B1@  [8]. Учитывая плотность вложения L 2 ( Γ p ) H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaakiaa=Hcaiiaa cqGFtoWrdaWgaaWcbaGaamiCaaqabaGccaWFPaGaeyOGIWSabmisay aaiaWaaWbaaSqabeaacqGHsislcaWFXaGaai4laiaa=jdaaaGccaWF OaGae43KdC0aaSbaaSqaaiaadchaaeqaaOGaa8xkaaaa@4CBA@ , ОПС S ps MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaBaaale aacaWGWbGaam4Caaqabaaaaa@3A89@ , определенный формулой (4.1), можно продолжить по непрерывности на H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmisayaaiaWaaW baaSqabeaacqGHsislruavP1wzZbItLDhis9wBH5gaiuaacaWFXaGa ai4laiaa=jdaaaGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaae qaaOGaa8xkaaaa@4525@  и аналогично [8] рассматривать как оператор, действующий из H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmisayaaiaWaaW baaSqabeaacqGHsislruavP1wzZbItLDhis9wBH5gaiuaacaWFXaGa ai4laiaa=jdaaaGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaae qaaOGaa8xkaaaa@4525@  в H 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaCaaale qabaqefqvATv2CG4uz3bIuV1wyUbacfaGaa8xmaiaac+cacaWFYaaa aOGaa8hkaGGaaiab+n5ahnaaBaaaleaacaWGWbaabeaakiaa=Lcaaa a@4429@ .

Обозначим через , MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyykJeUaeyyXIC TaaiilaiabgwSixlabgQYiXdaa@405F@  отношение двойственности , H ˜ 1/2 ( Γ p ) H 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaSraaSqaaiqadI eagaacamaaCaaameqabaGaeyOeI0sefqvATv2CG4uz3bIuV1wyUbac faGaa8xmaiaac+cacaWFYaaaaSGaa8hkaGGaaiab+n5ahnaaBaaame aacaWGWbaabeaaliaa=LcaaeqaaOGaeyykJeUaeyyXICTaaiilaiab gwSixlabgQYiXpaaBaaaleaacaWGibWaaWbaaWqabeaacaWFXaGaai 4laiaa=jdaaaWccaWFOaGae43KdC0aaSbaaWqaaiaadchaaeqaaSGa a8xkaaqabaaaaa@5552@ , порожденное продолжением скалярного произведения в L 2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaakiaa=Hcaiiaa cqGFtoWrdaWgaaWcbaGaamiCaaqabaGccaWFPaaaaa@42C7@ . Введем на H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmisayaaiaWaaW baaSqabeaacqGHsislruavP1wzZbItLDhis9wBH5gaiuaacaWFXaGa ai4laiaa=jdaaaGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaae qaaOGaa8xkaaaa@4525@  непрерывные билинейную и линейную формы

a(p,q)=p, G ps q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyyaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacaWGWbGaaiilaiaadghacaWFPaGa eyypa0JaeyykJeUaamiCaiaacYcacaWGhbWaaSbaaSqaaiaadchaca WGZbaabeaakiaadghacqGHQms8aaa@4C0B@ , b(p)=p,Φ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOyaGGaaiab=H caOiaadchacqWFPaqkcqGH9aqpcqGHPms4caWGWbGaaiilaiab=z6a gjabgQYiXdaa@42CC@ ,

предполагая, что Φ H 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdyKaey icI4SaamisamaaCaaaleqabaqefqvATv2CG4uz3bIuV1wyUbacfaGa a4xmaiaac+cacaGFYaaaaOGaa4hkaiab=n5ahnaaBaaaleaacaWGWb aabeaakiaa+Lcaaaa@471E@ . Аналогично [8] можно показать, что если выполняются условия (2.1), то билинейная форма a(,) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyyaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacqGHflY1caGGSaGaeyyXICTaa8xk aaaa@44A1@  является симметричной и коэрцитивной на H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmisayaaiaWaaW baaSqabeaacqGHsislruavP1wzZbItLDhis9wBH5gaiuaacaWFXaGa ai4laiaa=jdaaaGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaae qaaOGaa8xkaaaa@4525@ .

Образуем множество статически допустимых нормальных напряжений на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@

V= p H ˜ 1/2 ( Γ p ):p0;p,1= F 2 ;p, x 1 x 1 c = M 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvaiabg2da9m aacmaabaGaamiCaiabgIGiolqadIeagaacamaaCaaaleqabaGaeyOe I0sefqvATv2CG4uz3bIuV1wyUbacfaGaa8xmaiaac+cacaWFYaaaaO Gaa8hkaGGaaiab+n5ahnaaBaaaleaacaWGWbaabeaakiaa=LcacaWF 6aGaaGjbVlaaysW7caWGWbGaeyizImQaa8hmaiaaykW7caWF7aGaaG jbVlaaysW7cqGHPms4caWGWbGaaiilaiaa=fdacqGHQms8cqGH9aqp caWGgbWaaSbaaSqaaiaa=jdaaeqaaOGaa83oaiaaysW7caaMe8Uaey ykJeUaamiCaiaacYcacaGG4bWaaSbaaSqaaiaa=fdaaeqaaOGaeyOe I0IaamiEamaaDaaaleaacaWFXaaabaGaam4yaaaakiabgQYiXlabg2 da9iaad2eadaWgaaWcbaGaa83maaqabaaakiaawUhacaGL9baaaaa@7233@  (6.1)

Нетрудно видеть, что множество V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvaaaa@3873@  является замкнутым выпуклым множеством в H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmisayaaiaWaaW baaSqabeaacqGHsislruavP1wzZbItLDhis9wBH5gaiuaacaWFXaGa ai4laiaa=jdaaaGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaae qaaOGaa8xkaaaa@4525@ . Кроме того, в соответствии со сделанными при постановке задачи предположениями это множество является непустым.

Аналогично [8] можно показать, что решение q L 2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaiabgIGiol aadYeadaWgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa8Nmaaqa baGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaaeqaaOGaa8xkaa aa@4541@  системы (3.2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (3.5) удовлетворяет граничному вариационному неравенству: найти qV MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaiabgIGiol aadAfaaaa@3AED@  такой, что

a(pq,q)b(pq)0pV MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyyaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacaWGWbGaeyOeI0IaamyCaiaacYca caWGXbGaa8xkaiabgkHiTiaadkgaiiaacqGFOaakcaWGWbGaeyOeI0 IaamyCaiab+LcaPiabgwMiZkaa=bdacaaMf8UaeyiaIiIaamiCaiab gIGiolaadAfaaaa@5264@  (6.2)

Отметим, что неравенство (6.2) не содержит неизвестных смещения δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hTdq2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaaaa@3FAC@  и угла поворота φ 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NXdO2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+ndaaeqaaaaa@3FC5@  жесткого штампа. Как показано в [8], это является следствием того, что элементы множества статически допустимых нормальных напряжений V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvaaaa@3873@  удовлетворяют уравнениям равновесия штампа (3.5).

Используя известные приемы [9, 20, 21], можно доказать обратное утверждение: решение q MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaaaa@388E@  вариационного неравенства (6.2) удовлетворяет системе уравнений и неравенств (3.2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (3.5) по крайней мере в обобщенном смысле, т.е. условия (3.2) и (3.4) выполняются в смысле пространства H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmisayaaiaWaaW baaSqabeaacqGHsislruavP1wzZbItLDhis9wBH5gaiuaacaWFXaGa ai4laiaa=jdaaaGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaae qaaOGaa8xkaaaa@4525@ , условие (3.3) выполняется в смысле пространства H 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamisamaaCaaale qabaqefqvATv2CG4uz3bIuV1wyUbacfaGaa8xmaiaac+cacaWFYaaa aOGaa8hkaGGaaiab+n5ahnaaBaaaleaacaWGWbaabeaakiaa=Lcaaa a@4429@ , а условия (3.5) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  после продолжения по непрерывности на H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmisayaaiaWaaW baaSqabeaacqGHsislruavP1wzZbItLDhis9wBH5gaiuaacaWFXaGa ai4laiaa=jdaaaGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaae qaaOGaa8xkaaaa@4525@ :

q,1= F 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyykJeUaamyCai aacYcaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaGaeyOkJeVaeyyp a0JaamOramaaBaaaleaacaWFYaaabeaaaaa@45AE@ , q, x 1 x 1 c = M 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaeyykJeUaamyCai aacYcacaGG4bWaaSbaaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa =fdaaeqaaOGaeyOeI0IaamiEamaaDaaaleaacaWFXaaabaGaam4yaa aakiabgQYiXlabg2da9iaad2eadaWgaaWcbaGaa83maaqabaaaaa@4AA3@

Учитывая, что билинейная форма a(,) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyyaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacqGHflY1caGGSaGaeyyXICTaa8xk aaaa@44A1@  является положительно определенной, а множество V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvaaaa@3873@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  непустым замкнутым выпуклым множеством в H ˜ 1/2 ( Γ p ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmisayaaiaWaaW baaSqabeaacqGHsislruavP1wzZbItLDhis9wBH5gaiuaacaWFXaGa ai4laiaa=jdaaaGccaWFOaaccaGae43KdC0aaSbaaSqaaiaadchaae qaaOGaa8xkaaaa@4525@ , вариационное неравенство (6.2) эквивалентно задаче минимизации граничного функционала: найти qV MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCaiabgIGiol aadAfaaaa@3AED@  такой, что

J(q)= inf pV J(p)=a(p,p)/2b(p) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOsaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacaWGXbGaa8xkaiabg2da9maaxaba baGaa8xAaiaa=5gacaWFMbaaleaacaWGWbGaeyicI4SaamOvaaqaba GcdaGadaqaaiaadQeacaWFOaGaamiCaiaa=LcacqGH9aqpcaWGHbGa a8hkaiaadchacaGGSaGaamiCaiaa=LcacaWFVaGaa8NmaiabgkHiTi aadkgaiiaacqGFOaakcaWGWbGae4xkaKcacaGL7bGaayzFaaaaaa@5899@  (6.3)

Кроме того, решение вариационного неравенства (6.2) и задачи минимизации (6.3) существует и единственно [9, 21].

7. Конечномерная аппроксимация задачи. Выбор метода аппроксимации задачи (6.3) определяется, в первую очередь, возможностью построения эффективной с вычислительной точки зрения аппроксимации ОПС (4.1). Из (4.2) следует, что действие ОПС сводится к выполнению пары (прямого и обратного) преобразований Фурье и перемножению трансформант. Использование преобразования Фурье наиболее эффективно в случае периодических функций благодаря дискретности их спектра и, как следствие, переходе от непрерывного преобразования к дискретному. Учитывая, что для стратифицированной полосы передаточная функция ОПС строится численно, основная идея используемого подхода состоит в аппроксимации искомых нормальных напряжений периодическими сеточными функциями и применении алгоритмов быстрого преобразования Фурье (БПФ). Для уменьшения возникающей при этом ошибки периодичности [22, 23] вводится расширенная вычислительная область Γ c Γ N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadogaaeqaaOGaeyOGIWSae83KdC0aaSbaaSqaaerbuLwB Lnhiov2DGi1BTfMBaGqbciaa+5eaaeqaaaaa@4408@  такая, что

Γ p Γ c ,D=diam Γ c = k c diam Γ p ; k c , k c >1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaamrr1ngBPrwtHrhAYaqeguuDJXwAKbstHrhA Gq1DVbacfaGccqGFqlc0cqWFtoWrdaWgaaWcbaGaam4yaaqabaGcca GGSaGaaGzbVlaadsearuavP1wzZbItLDhis9wBH5gaiyaacaqF9aGa a0hzaiaa9LgacaqFHbGaa0xBaiaaysW7cqWFtoWrdaWgaaWcbaGaam 4yaaqabaGccqGH9aqpcaWGRbWaaSbaaSqaaiaadogaaeqaaOGaaGPa Vlaa9rgacaqFPbGaa0xyaiaa91gacaaMe8Uae83KdC0aaSbaaSqaai aadchaaeqaaOGaa03oaiaaywW7caWGRbWaaSbaaSqaaiaadogaaeqa aOGaeyicI4Sae4xfH4KaaiilaiaaywW7caWGRbWaaSbaaSqaaiaado gaaeqaaOGaeyOpa4Jaa0xmaaaa@72C1@ , (7.1)

где k c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4AamaaBaaale aacaWGJbaabeaaaaa@399B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  коэффициент расширения вычислительной области.

Построим на Γ c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadogaaeqaaaaa@3A18@  регулярную (равномерную) сетку T c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGJbaabeaaaaa@3985@ , состоящую из M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytaaaa@386A@  одноузловых граничных элементов нулевого порядка размером δ e =D/M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hTdq2aaS baaSqaaiaadwgaaeqaaOGaeyypa0Jaamiraiaac+cacaWGnbaaaa@3DB6@ . Узлы T c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGJbaabeaaaaa@3985@  обозначим t m ,m= 1,M ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiDamaaBaaale aacaWGTbaabeaakiaacYcacaaMe8UaamyBaiabg2da9maanaaabaqe fqvATv2CG4uz3bIuV1wyUbacfaGaa8xmaiaacYcacaWGnbaaaaaa@45BF@ . Часть T c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGJbaabeaaaaa@3985@ , расположенную на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  и содержащую L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitaaaa@3869@  элементов, обозначим T p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGWbaabeaaaaa@3992@ . Из (7.1) следует, что L=M/ k c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitaiabg2da9i aad2eacaGGVaGaam4AamaaBaaaleaacaWGJbaabeaaaaa@3CF8@ .

Далее векторы и матрицы будем обозначать большими латинскими буквами, а их элементы MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  соответствующими малыми латинскими буквами.

Введем на T c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGJbaabeaaaaa@3985@  сеточные функции нормальных напряжений и перемещений

Q c =(q( t 1 ),q( t 2 ),,q( t M )) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xuamaaBaaaleaaiuGacaGFJbaabeaakiabg2da 9Gqbaiaa9HcacaWGXbGaa0hkaiaadshadaWgaaWcbaGaa0xmaaqaba GccaqFPaGaaiilaiaadghacaqFOaGaamiDamaaBaaaleaacaqFYaaa beaakiaa9LcacaGGSaGaeSOjGSKaaiilaiaadghacaqFOaGaamiDam aaBaaaleaacaWGnbaabeaakiaa9LcacaqFPaaaaa@5141@ , W c =(w( t 1 ),w( t 2 ),,w( t M )) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83vamaaBaaaleaaiuGacaGFJbaabeaakiabg2da 9Gqbaiaa9HcacaWG3bGaa0hkaiaadshadaWgaaWcbaGaa0xmaaqaba GccaqFPaGaaiilaiaadEhacaqFOaGaamiDamaaBaaaleaacaqFYaaa beaakiaa9LcacaGGSaGaeSOjGSKaaiilaiaadEhacaqFOaGaamiDam aaBaaaleaacaWGnbaabeaakiaa9LcacaqFPaaaaa@515A@ ,

а также редукции этих функций на T p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGWbaabeaaaaa@3992@

Q p =R Q c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xuamaaBaaaleaaiuGacaGFWbaabeaakiabg2da 9iaa=jfacaWFrbWaaSbaaSqaaiaa+ngaaeqaaaaa@42E6@ , W p =R W c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83vamaaBaaaleaaiuGacaGFWbaabeaakiabg2da 9iaa=jfacaWFxbWaaSbaaSqaaiaa+ngaaeqaaaaa@42F2@ ,

где R MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8Nuaaaa@3DF8@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  прямоугольная матрица размеров L×M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitaiabgEna0k aad2eaaaa@3B52@ , в каждой строке которой имеется равно один ненулевой элемент, равный единице.

Обратные операции тривиального продолжения (дополнения нулевыми элементами) Q p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xuamaaBaaaleaaiuGacaGFWbaabeaaaaa@3F22@  и W p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83vamaaBaaaleaaiuGacaGFWbaabeaaaaa@3F28@  на T c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGJbaabeaaaaa@3985@  могут быть выполнены с помощью транспонированной матрицы R T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8NuamaaCaaaleqabaGaamivaaaaaaa@3EFE@

Q c = R T Q p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xuamaaBaaaleaaiuGacaGFJbaabeaakiabg2da 9iaa=jfadaahaaWcbeqaaiaadsfaaaGccaWFrbWaaSbaaSqaaiaa+b haaeqaaaaa@43F6@ , W c = R T W p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83vamaaBaaaleaaiuGacaGFJbaabeaakiabg2da 9iaa=jfadaahaaWcbeqaaiaadsfaaaGccaWFxbWaaSbaaSqaaiaa+b haaeqaaaaa@4402@

Введем матрицу Фурье порядка M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytaaaa@386A@

F= f mk , f mk = ω (m1)(k1) ,ω=exp 2πi/M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8Nraiabg2da9maadmaabaGaamOzamaaBaaaleaa caWGTbGaam4AaaqabaaakiaawUfacaGLDbaacaGGSaGaaGzbVlaadA gadaWgaaWcbaGaamyBaiaadUgaaeqaaOGaeyypa0dccaGae4xYdC3a aWbaaSqabeaaiuaacaqFOaGaamyBaiabgkHiTiaa9fdacaqFPaGaa0 hkaiaadUgacqGHsislcaqFXaGaa0xkaaaakiaacYcacaaMf8Uae4xY dCNaeyypa0Jaa0xzaiaa9HhacaqFWbWaaeWaaeaacqGHsislcaqFYa Gae4hWdaNaaGjcVJqbciaa8LgacaGGVaGaamytaaGaayjkaiaawMca aaaa@64BB@

Матрица Фурье обратима и при этом обратная матрица имеет вид

F 1 = F * /M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8NramaaCaaaleqabaGaeyOeI0ccfaGaa4xmaaaa kiabg2da9iaa=zeadaahaaWcbeqaaiaacQcaaaGccaGGVaGaamytaa aa@4404@ ,

где F * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8NramaaCaaaleqabaGaaiOkaaaaaaa@3EC6@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  эрмитово сопряженная матрица.

Используя матрицу F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8Nraaaa@3DEB@ , вычислим образы Фурье Q ˜ c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGab8xuayaaiaWaaSbaaSqaaGqbciaa+ngaaeqaaaaa @3F24@  и W ˜ c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGab83vayaaiaWaaSbaaSqaaGqbciaa+ngaaeqaaaaa @3F2A@  соответственно сеточных функций нормальных напряжений и перемещений

Q ˜ c =( q ˜ 0 , q ˜ 1 ,, q ˜ M1 )=F Q c =F R T Q p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGab8xuayaaiaWaaSbaaSqaaGqbciaa+ngaaeqaaOGa eyypa0dcfaGaa0hkaiqadghagaacamaaBaaaleaacaqFWaaabeaaki aacYcaceWGXbGbaGaadaWgaaWcbaGaa0xmaaqabaGccaGGSaGaeSOj GSKaaiilaiqadghagaacamaaBaaaleaacaWGnbGaeyOeI0Iaa0xmaa qabaGccaqFPaGaa8xpaiaa=zeacaWFrbWaaSbaaSqaaiaa+ngaaeqa aOGaa8xpaiaa=zeacaWFsbWaaWbaaSqabeaacaWGubaaaOGaa8xuam aaBaaaleaacaGFWbaabeaaaaa@5507@  (7.2)

W ˜ c =( w ˜ 0 , w ˜ 1 ,, w ˜ M1 )=F W c =F R T W p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGab83vayaaiaWaaSbaaSqaaGqbciaa+ngaaeqaaOGa eyypa0dcfaGaa0hkaiqadEhagaacamaaBaaaleaacaqFWaaabeaaki aacYcaceWG3bGbaGaadaWgaaWcbaGaa0xmaaqabaGccaGGSaGaeSOj GSKaaiilaiqadEhagaacamaaBaaaleaacaWGnbGaeyOeI0Iaa0xmaa qabaGccaqFPaGaa8xpaiaa=zeacaWFxbWaaSbaaSqaaiaa+ngaaeqa aOGaa8xpaiaa=zeacaWFsbWaaWbaaSqabeaacaWGubaaaOGaa83vam aaBaaaleaacaGFWbaabeaaaaa@552A@  (7.3)

Сеточные функции Q c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xuamaaBaaaleaaiuGacaGFJbaabeaaaaa@3F15@  и W c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83vamaaBaaaleaaiuGacaGFJbaabeaaaaa@3F1B@  являются вещественными, поэтому из свойств ДПФ следует, что компоненты Q ˜ c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGab8xuayaaiaWaaSbaaSqaaGqbciaa+ngaaeqaaaaa @3F24@  и W ˜ c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGab83vayaaiaWaaSbaaSqaaGqbciaa+ngaaeqaaaaa @3F2A@  удовлетворяют условиям

q ˜ Mm = q ˜ m * , w ˜ Mm = w ˜ m * ;m=1,2,,M1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGabmyCayaaiaWaaS baaSqaaiaad2eacqGHsislcaWGTbaabeaakiabg2da9iqadghagaac amaaDaaaleaacaWGTbaabaGaaiOkaaaakiaacYcacaaMf8Uabm4Day aaiaWaaSbaaSqaaiaad2eacqGHsislcaWGTbaabeaakiabg2da9iqa dEhagaacamaaDaaaleaacaWGTbaabaGaaiOkaaaaruavP1wzZbItLD his9wBH5gaiuaakiaa=TdacaaMf8UaamyBaiabg2da9iaa=fdacaGG SaGaaGjbVlaa=jdacaGGSaGaaGjbVlablAciljaacYcacaaMc8Uaam ytaiabgkHiTiaa=fdaaaa@5EF8@  (7.4)

Для сеточных функций соотношение (4.2) примет вид

W ˜ c = G ˜ Q ˜ c ; G ˜ =diag( g ˜ 0 , g ˜ 1 ,, g ˜ M1 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGab83vayaaiaWaaSbaaSqaaGqbciaa+ngaaeqaaOGa eyypa0Jab83rayaaiaGab8xuayaaiaWaaSbaaSqaaiaa+ngaaeqaaG qbaOGaa03oaiaaywW7ceWFhbGbaGaacqGH9aqpcaqFKbGaa0xAaiaa 9fgacaqFNbGaa0hkaiqa+DgagaacamaaBaaaleaacaqFWaaabeaaki aacYcacaaMc8Uab43zayaaiaWaaSbaaSqaaiaa9fdaaeqaaOGaaiil aiaaykW7cqWIMaYscaGGSaGab43zayaaiaWaaSbaaSqaaiaad2eacq GHsislcaqFXaaabeaakiaa9Lcaaaa@59B6@ ,  (7.5)

где с учетом (7.4) для четных M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytaaaa@386A@

g ˜ 0 = g ˜ ps (0)= 0 h d x 2 λ( x 2 )+2μ( x 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfiGab83zayaaiaWaaSbaaSqaaGqbaiaa+bdaaeqaaOGa eyypa0Jab83zayaaiaWaaSbaaSqaaiaadchacaWGZbaabeaakiaa+H cacaGFWaGaa4xkaiabg2da9maapehabaWaaSaaaeaacaWGKbGaa8hE amaaBaaaleaacaGFYaaabeaaaOqaaGGaaiab9T7aSjaa+HcacaWF4b WaaSbaaSqaaiaa+jdaaeqaaOGaa4xkaiaa+TcacaGFYaGae0hVd0Ma a4hkaiaa=HhadaWgaaWcbaGaa4NmaaqabaGccaGFPaaaaaWcbaGaa4 hmaaqaaiaadIgaa0Gaey4kIipaaaa@583E@ , g ˜ m = g ˜ Mm = g ˜ ps 2πm/D ;m=1,2,,M/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfiGab83zayaaiaWaaSbaaSqaaiaad2gaaeqaaOGaeyyp a0Jab83zayaaiaWaaSbaaSqaaiaad2eacqGHsislcaWGTbaabeaaki abg2da9iqa=DgagaacamaaBaaaleaacaWGWbGaam4CaaqabaGcdaqa daqaaGqbaiaa+jdaiiaacqqFapaCcaWFTbGaai4laiaadseaaiaawI cacaGLPaaacaGF7aGaaGzbVlaad2gacqGH9aqpcaGFXaGaaiilaiaa ysW7caGFYaGaaiilaiaaysW7cqWIMaYscaGGSaGaaGPaVlaad2eaca GGVaGaa4Nmaaaa@5E6C@

Несложно показать, что g ˜ 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfiGab83zayaaiaWaaSbaaSqaaGqbaiaa+bdaaeqaaaaa @3F05@  представляет собой коэффициент податливости рассматриваемой стратифицированной упругой полосы для случая приложения равномерной нормальной нагрузки по всей границе Γ N MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbciaa+5eaaeqaaaaa@3F8C@ .

Из (7.2), (7.3) и (7.5) следует, что сеточная аппроксимация интегрального представления (4.1), определяющего ОПС S ps MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4uamaaBaaale aacaWGWbGaam4Caaqabaaaaa@3A89@ , имеет вид

W p =S Q p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83vamaaBaaaleaaiuGacaGFWbaabeaakiabg2da 9iaa=nfacaWFrbWaaSbaaSqaaiaa+bhaaeqaaaaa@42F9@ , (7.6)

где

S=R F * G ˜ F R T /M MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83uaiabg2da9iaa=jfacaaMi8Uaa8NramaaCaaa leqabaGaaiOkaaaakiaayIW7ceWFhbGbaGaacaaMi8Uaa8NraiaayI W7caWFsbWaaWbaaSqabeaacaWGubaaaOGaai4laiaad2eaaaa@4CC7@  (7.7)

Матрица S MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83uaaaa@3DF9@  является квадратной матрицей порядка L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitaaaa@3869@ . Для вычисления произведения этой матрицы на вектор формировать ее в явном виде не требуется, достаточно программно реализовать вычисление произведений каждой из матриц в правой части (7.7) на векторы. Учитывая, что матрицы R MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8Nuaaaa@3DF8@  и R T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8NuamaaCaaaleqabaGaamivaaaaaaa@3EFE@  содержат только L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitaaaa@3869@  ненулевых элементов равных 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfaGaa8xmaaaa@3DD6@ , вычисление произведений этих матриц на векторы сводится к выполнению L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitaaaa@3869@  операций присваивания. Умножение диагональной матрицы G ˜ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGab83rayaaiaGaaGjcVdaa@3F8C@  на вектор требует выполнения M MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytaaaa@386A@  операций умножения. Для вычисления произведений матриц F MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8Nraaaa@3DEB@  и F * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8NramaaCaaaleqabaGaaiOkaaaaaaa@3EC6@  на векторы целесообразно использовать алгоритмы БПФ. Поэтому далее будем полагать M= 2 m ,m MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytaiabg2da9e rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=jdadaahaaWcbeqaaiaad2ga aaGccaGGSaGaaGjbVlaad2gacqGHiiIZtuuDJXwAK1uy0HMmaeHbfv 3ySLgzG0uy0HgiuD3BaGGbaiab+vriobaa@5037@ . В этом случае число операций для выполнения одного преобразования имеет порядок O(Mm)=O(Mlo g 2 M) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4taerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacaWGnbGaaGjcVlaad2gacaWFPaGa eyypa0Jaam4taiaa=HcacaWGnbGaaGPaVlaa=XgacaWFVbGaa83zam aaBaaaleaacaWFYaaabeaaiuGakiaa+1eacaWFPaaaaa@4CB4@ .

Аппроксимация задачи минимизации (6.3) производится с помощью гранично-элементного подхода. Для вычисления билинейной a(,) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyyaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacqGHflY1caGGSaGaeyyXICTaa8xk aaaa@44A1@  и линейной b() MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOyaerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacqGHflY1caWFPaaaaa@41A8@  форм используется квадратурная формула прямоугольников, узлы которой совпадают с узлами сетки T p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGWbaabeaaaaa@3992@ . Тем самым определяются аппроксимирующие билинейная a 1 (,) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyyamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabeaakiaa=HcacqGH flY1caGGSaGaeyyXICTaa8xkaaaa@4589@  и линейная b 1 () MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOyamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabeaakiaa=HcacqGH flY1caWFPaaaaa@4290@  формы в пространстве L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWefv3ySLgznfgDOj daryqr1ngBPrginfgDObcv39gaiuqacqWFDeIudaahaaWcbeqaaerb uLwBLnhiov2DGi1BTfMBaGGbciaa+Xeaaaaaaa@48D9@

a 1 ( P p , Q p )= P p T S Q p δ e , b 1 ( P p )= Φ T P p δ e MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyyamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabeaakiaa=Hcaiuqa caGFqbWaaSbaaSqaaGqbciaa9bhaaeqaaOGaaiilaiaa+ffadaWgaa WcbaGaa0hCaaqabaGccaWFPaGaeyypa0Jaa4huamaaDaaaleaacaqF WbaabaGaamivaaaakiaa+nfacaGFrbWaaSbaaSqaaiaa9bhaaeqaaG GaaOGaeWhTdq2aaSbaaSqaaiaadwgaaeqaaOGaaiilaiaaywW7caWG IbWaaSbaaSqaaiaa=fdaaeqaaOGaa8hkaiaa+bfadaWgaaWcbaGaa0 hCaaqabaGccaWFPaGaeyypa0dcceGaeSNPdy0aaWbaaSqabeaacaWF ubaaaOGaa4huamaaBaaaleaacaqFWbaabeaakiab8r7aKnaaBaaale aacaWGLbaabeaaaaa@5DEB@ ,

где Φ= ( ϕ 1 , ϕ 2 ,, ϕ L ) T MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaacceGae8NPdyKae8 xpa0dccaGae4hkaGIae4x1dy2aaSbaaSqaaerbuLwBLnhiov2DGi1B TfMBaGqbaiaa9fdaaeqaaOGae4hlaWIae4x1dy2aaSbaaSqaaiaa9j daaeqaaOGae4hlaWIaeSOjGSKae4hlaWIae4x1dy2aaSbaaSqaaGqb ciaa8XeaaeqaaOGae4xkaKYaaWbaaSqabeaacaWGubaaaaaa@4E34@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  сеточная аппроксимация на T p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGWbaabeaaaaa@3992@  функции Φ( x 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdyKaaG jcVlaaygW7ruavP1wzZbItLDhis9wBH5gaiuaacaGFOaGaamiEamaa BaaaleaacaGFXaaabeaakiaa+Lcaaaa@44F2@ , описывающей форму основания штампа.

При аппроксимации множества статически допустимых нормальных напряжений V MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvaaaa@3873@ , определенного формулой (6.1), применяется комбинированный подход. Для аппроксимации ограничений в виде неравенств используется коллокационный метод, а при аппроксимации ограничений в виде равенств MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  квадратурная формула прямоугольников, узлы которой совпадают с узлами сетки T p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGWbaabeaaaaa@3992@ . В результате получается замкнутое выпуклое множество статически допустимых узловых нормальных напряжений

V 1 = Q L : q i 0,i= 1,L ¯ ; i=1 L θ i q i = F 2 ; i=1 L ϑ i q i = M 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOvamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabeaakiabg2da9maa cmaabaacfeGaa4xuaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKb stHrhAGq1DVbacgeGae0xhHi1aaWbaaSqabeaaiuGacaaFmbaaaOGa a8NoaiaaysW7caaMe8UaaGjbVlaadghadaWgaaWcbaGaamyAaaqaba GccqGHKjYOcaWFWaGaaiilaiaaysW7caaMc8UaamyAaiabg2da9maa naaabaGaa8xmaiaacYcacaWGmbaaaiaa=TdacaaMf8+aaabCaeaaii aacqWE4oqCdaWgaaWcbaGaamyAaaqabaGccaWGXbWaaSbaaSqaaiaa dMgaaeqaaaqaaiaadMgacqGH9aqpcaWFXaaabaGaamitaaqdcqGHri s5aOGaeyypa0JaamOramaaBaaaleaacaWFYaaabeaakiaa=TdacaaM f8+aaabCaeaacqWErpGsdaWgaaWcbaGaamyAaaqabaGccaWGXbWaaS baaSqaaiaadMgaaeqaaaqaaiaadMgacqGH9aqpcaWFXaaabaGaamit aaqdcqGHris5aOGaeyypa0JaamytamaaBaaaleaacaWFZaaabeaaaO Gaay5Eaiaaw2haaaaa@8169@

Коэффициенты λ i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83UdW2aaS baaSqaaiaadMgaaeqaaaaa@3A6B@  и ϑ i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8x0dO0aaS baaSqaaiaadMgaaeqaaaaa@3A5F@  вычисляются по формулам

θ i = δ e , ϑ i = δ e ( x 1 i x 1 c );i= 1,L ¯ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hUde3aaS baaSqaaiaadMgaaeqaaOGaeyypa0Jae8hTdq2aaSbaaSqaaiaadwga aeqaaOGaaiilaiaaywW7cqWFrpGsdaWgaaWcbaGaamyAaaqabaGccq GH9aqpcqWF0oazdaWgaaWcbaGaamyzaaqabaGccqWFOaakcaWG4bWa a0baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdaaeaacaWGPb aaaOGae8NeI0IaamiEamaaDaaaleaacaGFXaaabaGaam4yaaaakiab =LcaPiab=Tda7iaaywW7caWGPbGaeyypa0Zaa0aaaeaacaGFXaGaai ilaiaadYeaaaaaaa@5B86@ ,

где x 1 i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiEamaaDaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabaGaamyAaaaaaaa@3FEE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  координата узла t i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiDamaaBaaale aacaWGPbaabeaaaaa@39AB@  сетки T p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGWbaabeaaaaa@3992@ .

В результате для задачи минимизации (6.3) получим сеточную аппроксимацию MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  задачу квадратичного программирования: найти сеточную функцию нормальных напряжений Q p L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xuamaaBaaaleaacaWGWbaabeaakiabgIGioprr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacgeGae4xhHi1aaW baaSqabeaaiuGacaqFmbaaaaaa@4C65@  такую, что

J 1 ( Q p )= min QV J 1 (Q)= Q T SQ δ e /2 Φ T Q δ e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOsamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabeaakiaa=Hcaiuqa caGFrbWaaSbaaSqaaiaadchaaeqaaOGaa8xkaiabg2da9maaxababa Gaa8xBaiaa=LgacaWFUbaaleaacaGFrbGaeyicI4SaamOvaaqabaGc daGadaqaaiaadQeadaWgaaWcbaGaa8xmaaqabaGccaWFOaGaa4xuai aa=LcacqGH9aqpcaGFrbWaaWbaaSqabeaacaWFubaaaOGaa43uaiaa +ffacaaMc8occaGae0hTdq2aaSbaaSqaaiaadwgaaeqaaOGaai4lai aa=jdacqGHsisliiqacqaFMoGrdaahaaWcbeqaaiaa=rfaaaGccaGF rbGaaGPaVlab9r7aKnaaBaaaleaacaWGLbaabeaaaOGaay5Eaiaaw2 haaaaa@6253@  (7.8)

Отметим, что размерность задачи (7.8) равна L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitaaaa@3868@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  количеству узлов сетки на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  и не зависит от размера вычислительной области Γ c MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadogaaeqaaaaa@3A18@ , т.е. от выбора коэффициента расширения вычислительной области k c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4AamaaBaaale aacaWGJbaabeaaaaa@399B@ .

Для численного решения задачи квадратичного программирования (7.8) в настоящей работе использовался алгоритм на основе метода сопряженных градиентов, предложенный в [24] при решении задач одностороннего дискретного контакта для упругой полуплоскости. В [8] этот алгоритм применялся при решении задач одностороннего дискретного контакта для однородной упругой полосы. Следует отметить, что алгоритм [24] позволяет вычислять не только сеточную функцию нормальных напряжений Q p L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xuamaaBaaaleaacaWGWbaabeaakiabgIGioprr 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1DVbacgeGae4xhHi1aaW baaSqabeaaiuGacaqFmbaaaaaa@4C65@ , но и смещение δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hTdq2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaaaa@3FAC@  и угол поворота φ 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NXdO2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+ndaaeqaaaaa@3FC5@  жесткого штампа.

8. Апостериорный анализ численных решений. Для оценки погрешности выполнения сеточных аппроксимаций условий (3.2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ (3.5) использовался следующий набор параметров:

ε q = max 1iL q i / q nom MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xTdu2aaS baaSqaaiaadghaaeqaaOGaeyypa0ZaaCbeaeaaruavP1wzZbItLDhi s9wBH5gaiuaacaGFTbGaa4xyaiaa+HhaaSqaaiaa+fdacqGHKjYOca WGPbGaeyizImQaamitaaqabaGccaWGXbWaaSbaaSqaaiaadMgaaeqa aOGaai4laiaadghadaWgaaWcbaGaamOBaiaad+gacaWGTbaabeaaaa a@50AD@ , ε f = i=1 L θ i q i F 2 / F 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xTdu2aaS baaSqaaiaadAgaaeqaaOGaeyypa0ZaaqWaaeaadaaeWbqaaiab=H7a XnaaBaaaleaacaWGPbaabeaakiaadghadaWgaaWcbaGaamyAaaqaba aabaGaamyAaiabg2da9erbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fda aeaacaWGmbaaniabggHiLdGccqGHsislcaWGgbWaaSbaaSqaaiaa+j daaeqaaaGccaGLhWUaayjcSdGaai4lamaaemaabaGaamOramaaBaaa leaacaGFYaaabeaaaOGaay5bSlaawIa7aaaa@56DD@ , ε m = i=1 L ϑ i q i M 3 / M 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xTdu2aaS baaSqaaiaad2gaaeqaaOGaeyypa0ZaaqWaaeaadaaeWbqaaiab=f9a knaaBaaaleaacaWGPbaabeaakiaadghadaWgaaWcbaGaamyAaaqaba aabaGaamyAaiabg2da9erbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fda aeaacaWGmbaaniabggHiLdGccqGHsislcaWGnbWaaSbaaSqaaiaa+n daaeqaaaGccaGLhWUaayjcSdGaai4lamaaemaabaGaamytamaaBaaa leaacaGFZaaabeaaaOGaay5bSlaawIa7aaaa@56E6@  для M 3 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFZaaabeaakiabgcMi5kaa =bdaaaa@4157@

ε zp = min 1iL z i [ q i 0] a / δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xTdu2aaS baaSqaaiaadQhacaWGWbaabeaakiabg2da9maaxababaqefqvATv2C G4uz3bIuV1wyUbacfaGaa4xBaiaa+LgacaGFUbaaleaacaGFXaGaey izImQaamyAaiabgsMiJkaadYeaaeqaaOGaamOEamaaBaaaleaacaWG Pbaabeaakiaa+TfacaWGXbWaaSbaaSqaaiaadMgaaeqaaOGaeyyzIm Raa4hmaiaa+1fadaWgaaWcbaGaamyyaaqabaGccaGGVaWaaqWaaeaa cqWF0oazdaWgaaWcbaGaa4NmaaqabaaakiaawEa7caGLiWoaaaa@5AC5@ , ε zm = max 1iL z i [ q i <0] a / δ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xTdu2aaS baaSqaaiaadQhacaWGTbaabeaakiabg2da9maaxababaqefqvATv2C G4uz3bIuV1wyUbacfaGaa4xBaiaa+fgacaGF4baaleaacaGFXaGaey izImQaamyAaiabgsMiJkaadYeaaeqaaOGaamOEamaaBaaaleaacaWG Pbaabeaakiaa+TfacaWGXbWaaSbaaSqaaiaadMgaaeqaaOGaeyipaW Jaa4hmaiaa+1fadaWgaaWcbaGaamyyaaqabaGccaGGVaWaaqWaaeaa cqWF0oazdaWgaaWcbaGaa4NmaaqabaaakiaawEa7caGLiWoaaaa@5A02@ ,

где q nom = F 2 /diam Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyCamaaBaaale aacaWGUbGaam4Baiaad2gaaeqaaOGaeyypa0JaamOramaaBaaaleaa ruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaakiaac+cacaWFKb Gaa8xAaiaa=fgacaWFTbGaaGjbVJGaaiab+n5ahnaaBaaaleaacaWG Wbaabeaaaaa@4C4E@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  средние (номинальные) контактные напряжения; z i = ϕ i + δ 2 +( x 1 i x 1 c ) φ 3 w i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOEamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuGacaWFPbaabeaakiabg2da9GGa aiab+v9aMnaaBaaaleaacaWFPbaabeaakiabgUcaRiab+r7aKnaaBa aaleaaiuaacaqFYaaabeaakiabgUcaRiaa9HcacaGG4bWaa0baaSqa aiaa9fdaaeaacaWGPbaaaOGaeyOeI0IaamiEamaaDaaaleaacaqFXa aabaGaam4yaaaakiaa9LcacqGFgpGAdaWgaaWcbaGaa03maaqabaGc cqGHsislcaWG3bWaaSbaaSqaaiaa=Lgaaeqaaaaa@5505@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  конечный зазор (проникание) между упругой полосой и штампом в узле t i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiDamaaBaaale aacaWGPbaabeaaaaa@39AB@  сетки T p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGWbaabeaaaaa@3992@ ; w i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4DamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuGacaWFPbaabeaaaaa@3F37@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  нормальное перемещение узла t i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiDamaaBaaale aacaWGPbaabeaaaaa@39AB@  сетки T p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGWbaabeaaaaa@3992@ ; [] a MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfaGaa83waiabgwSixlaa=1fadaWgaaWcbaGaamyyaaqa baaaaa@423A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  скобка Айверсона (функция, равная 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfaGaa8xmaaaa@3DD6@  для истинного аргумента и равная 0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfaGaa8hmaaaa@3DD5@  в противном случае). Сеточная функция нормальных перемещений W p =( w 1 , w 2 ,, w L ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa83vamaaBaaaleaaiuGacaGFWbaabeaakiabg2da 9Gqbaiaa9HcacaWG3bWaaSbaaSqaaiaa9fdaaeqaaOGaaiilaiaadE hadaWgaaWcbaGaa0NmaaqabaGccaGGSaGaeSOjGSKaaiilaiaadEha daWgaaWcbaGaamitaaqabaGccaqFPaaaaa@4A8D@ , соответствующих решению Q p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8xuamaaBaaaleaacaWGWbaabeaaaaa@3F17@  задачи квадратичного программирования (7.8), вычислялась с помощью (7.6).

9. Численные результаты. Разработанный вычислительный алгоритм решения задач одностороннего дискретного контакта для стратифицированной упругой полосы реализован на языке FORTRAN с применением NVIDIA HPC SDK. Для выполнения БПФ использовалась библиотека cuFFT, позволяющая с помощью технологии CUDA производить вычисления на графических процессорах.

При верификации алгоритма и разработанного программного обеспечения использовалась рассмотренная в [8] тестовая задача о вдавливании в упругую полосу штампа, форма основания которого описывается квадратичной функцией. Проведено сравнение решений для случаев наличия и отсутствия момента внешних сил, приложенных к штампу, относительно точки начального контакта. Полученные численные результаты соответствуют аналитическим выводам, приведенным в [8].

Также проведено сравнение численных решений рассмотренных ниже задач дискретного контакта для штампов с регулярным поверхностным микрорельефом с решениями, полученными с помощью известного алгоритма [25]. Учитывая возможности последнего, при постановке контактных задач использовалось лишь первое из уравнений равновесия штампа (2.7) и полагалось φ 3 =0 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NXdO2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+ndaaeqaaOGaeyyp a0Jaa4hmaaaa@4185@ . Выполненные расчеты показали, что при проведении вычислений с двойной точностью среднеквадратичные относительные расхождения решений (сеточных функций нормальных напряжений) не превышают 1 0 7 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xmaeJae8 hmaaZaaWbaaSqabeaacqGHsislruavP1wzZbItLDhis9wBH5gaiuaa caGF3aaaaaaa@40CB@ .

Получены численные решения ряда задач одностороннего дискретного контакта для стратифицированных упругих полос, в частности, для четырех полос, состоящих из N=10 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOtaiabg2da9e rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=fdacaWFWaaaaa@405F@  одинаковых слоев, модуль Юнга E MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyraaaa@3861@  и коэффициент Пуассона ν MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xVd4gaaa@3954@  которых изменялись по одному из следующих законов:

E( ξ 2 )= E 1 +( E 2 E 1 ) ξ 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyraerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacqaH+oaEdaWgaaWcbaGaa8Nmaaqa baGccaWFPaGaeyypa0JaamyramaaBaaaleaacaWFXaaabeaakiabgU caRiaa=HcacaWGfbWaaSbaaSqaaiaa=jdaaeqaaOGaeyOeI0Iaamyr amaaBaaaleaacaWFXaaabeaakiaa=LcacqaH+oaEdaqhaaWcbaGaa8 Nmaaqaaiaa=jdaaaaaaa@4E81@ , ν( ξ 2 )= ν 1 +( ν 2 ν 1 ) ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xVd4wefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiabe67a4naaBaaaleaacaGF Yaaabeaakiaa+LcacqGH9aqpcqWF9oGBdaWgaaWcbaGaa4xmaaqaba GccqGHRaWkcaGFOaGae8xVd42aaSbaaSqaaiaa+jdaaeqaaOGaeyOe I0Iae8xVd42aaSbaaSqaaiaa+fdaaeqaaOGaa4xkaiabe67a4naaBa aaleaacaGFYaaabeaaaaa@5172@

E( ξ 2 )= E 1 +( E 2 E 1 ) ξ 2 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyraerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacqaH+oaEdaWgaaWcbaGaa8Nmaaqa baGccaWFPaGaeyypa0JaamyramaaBaaaleaacaWFXaaabeaakiabgU caRiaa=HcacaWGfbWaaSbaaSqaaiaa=jdaaeqaaOGaeyOeI0Iaamyr amaaBaaaleaacaWFXaaabeaakiaa=LcacqaH+oaEdaqhaaWcbaGaa8 Nmaaqaaiaa=rdaaaaaaa@4E83@ , ν( ξ 2 )= ν 1 +( ν 2 ν 1 ) ξ 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xVd4wefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiabe67a4naaBaaaleaacaGF Yaaabeaakiaa+LcacqGH9aqpcqWF9oGBdaWgaaWcbaGaa4xmaaqaba GccqGHRaWkcaGFOaGae8xVd42aaSbaaSqaaiaa+jdaaeqaaOGaeyOe I0Iae8xVd42aaSbaaSqaaiaa+fdaaeqaaOGaa4xkaiabe67a4naaDa aaleaacaGFYaaabaGaa4Nmaaaaaaa@5225@

E( ξ 2 )= E 2 +( E 1 E 2 ) ξ 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyraerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacqaH+oaEdaWgaaWcbaGaa8Nmaaqa baGccaWFPaGaeyypa0JaamyramaaBaaaleaacaWFYaaabeaakiabgU caRiaa=HcacaWGfbWaaSbaaSqaaiaa=fdaaeqaaOGaeyOeI0Iaamyr amaaBaaaleaacaWFYaaabeaakiaa=LcacqaH+oaEdaqhaaWcbaGaa8 Nmaaqaaiaa=jdaaaaaaa@4E82@ , ν( ξ 2 )= ν 2 +( ν 1 ν 2 ) ξ 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xVd4wefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiabe67a4naaBaaaleaacaGF Yaaabeaakiaa+LcacqGH9aqpcqWF9oGBdaWgaaWcbaGaa4Nmaaqaba GccqGHRaWkcaGFOaGae8xVd42aaSbaaSqaaiaa+fdaaeqaaOGaeyOe I0Iae8xVd42aaSbaaSqaaiaa+jdaaeqaaOGaa4xkaiabe67a4naaBa aaleaacaGFYaaabeaaaaa@5173@

E( ξ 2 )= E 2 +( E 1 E 2 ) ξ 2 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyraerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacqaH+oaEdaWgaaWcbaGaa8Nmaaqa baGccaWFPaGaeyypa0JaamyramaaBaaaleaacaWFYaaabeaakiabgU caRiaa=HcacaWGfbWaaSbaaSqaaiaa=fdaaeqaaOGaeyOeI0Iaamyr amaaBaaaleaacaWFYaaabeaakiaa=LcacqaH+oaEdaqhaaWcbaGaa8 Nmaaqaaiaa=rdaaaaaaa@4E84@ , ν( ξ 2 )= ν 2 +( ν 1 ν 2 ) ξ 2 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xVd4wefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiabe67a4naaBaaaleaacaGF Yaaabeaakiaa+LcacqGH9aqpcqWF9oGBdaWgaaWcbaGaa4Nmaaqaba GccqGHRaWkcaGFOaGae8xVd42aaSbaaSqaaiaa+fdaaeqaaOGaeyOe I0Iae8xVd42aaSbaaSqaaiaa+jdaaeqaaOGaa4xkaiabe67a4naaDa aaleaacaGFYaaabaGaa4Nmaaaaaaa@5226@ ,

где ξ 2 = N x 2 /h MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NVdG3aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaOGaeyyp a0ZaaiWaaeaacaWGobGaamiEamaaBaaaleaacaGFYaaabeaakiaac+ cacaWGObaacaGL7bGaayzFaaaaaa@4763@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  «быстрая» координата, MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaWaaiWaaeaacqGHfl Y1aiaawUhacaGL9baaaaa@3C13@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  дробная часть числа; E 1 = E * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyramaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabeaakiabg2da9iaa dweadaahaaWcbeqaaiaacQcaaaaaaa@4180@ ; E 2 =4 E * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyramaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaakiabg2da9iaa =rdacaWGfbWaaWbaaSqabeaacaGGQaaaaaaa@4236@ ; ν 1 =0.4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xVd42aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdaaeqaaOGaeyyp a0Jaa4hmaiaac6cacaGF0aaaaa@42E3@ ; ν 2 =0.1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xVd42aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaOGaeyyp a0Jaa4hmaiaac6cacaGFXaaaaa@42E1@ ; E * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyramaaCaaale qabaGaaiOkaaaaaaa@393C@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  масштабный множитель (размерная величина, МПа). Графики приведенных выше функций E( ξ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyraerbuLwBLn hiov2DGi1BTfMBaGqbaiaa=HcacqaH+oaEdaWgaaWcbaGaa8Nmaaqa baGccaWFPaaaaa@41EC@  и ν( ξ 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xVd4wefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiabe67a4naaBaaaleaacaGF Yaaabeaakiaa+Lcaaaa@42DC@  изображены соответственно на рис. 1,а,б. Номера кривых 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 4 соответствуют номерам стратифицированных полос.

 

Рис. 1

 

Далее приведен анализ результатов решения задач дискретного контакта для гладких штампов с регулярным поверхностным микрорельефом, состоящим из K MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4saaaa@3868@  микровыступов. Номинальная область контакта полагалась равной Γ p ={0 x 1 d, x 2 =h} MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaOGaeyypa0tefqvATv2CG4uz3bIuV1wyUbac faGaa43Eaiaa+bdacqGHKjYOcaGG4bWaaSbaaSqaaiaa+fdaaeqaaO GaeyizImQaamizaiaacYcacaaMe8UaaiiEamaaBaaaleaacaGFYaaa beaakiabg2da9iaadIgacaGF9baaaa@4FB3@ . Форма основания штампов задавалась функцией [8]

Φ( x 1 )= Φ 1 ( x 1 )+ Φ 2 ( ξ 1 )/K MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdyuefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiaadIhadaWgaaWcbaGaa4xm aaqabaGccaGFPaGaeyypa0Jae8NPdy0aaSbaaSqaaiaa+fdaaeqaaO Gaa4hkaiaadIhadaWgaaWcbaGaa4xmaaqabaGccaGFPaGaey4kaSIa e8NPdy0aaSbaaSqaaiaa+jdaaeqaaOGaa4hkaiab=57a4naaBaaale aacaGFXaaabeaakiaa+LcacaGGVaGaam4saaaa@5124@ , (9.1)

где Φ 1 ( x 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdy0aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdaaeqaaOGaa4hk aiaadIhadaWgaaWcbaGaa4xmaaqabaGccaGFPaaaaa@42BE@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  выпуклая функция, определяющая макроформу штампа; Φ 2 ( ξ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdy0aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaOGaa4hk aiab=57a4naaBaaaleaacaGFXaaabeaakiaa+Lcaaaa@4380@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  строго выпуклая функция, характеризующая форму микровыступов; ξ 1 = K x 1 /d MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NVdG3aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdaaeqaaOGaeyyp a0ZaaiWaaeaacaWGlbGaamiEamaaBaaaleaacaGFXaaabeaakiaac+ cacaWGKbaacaGL7bGaayzFaaaaaa@475A@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  «быстрая» координата. Для заданной пары функций Φ 1 ( x 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdy0aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdaaeqaaOGaa4hk aiaadIhadaWgaaWcbaGaa4xmaaqabaGccaGFPaaaaa@42BE@  и Φ 2 ( ξ 1 ) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdy0aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaOGaa4hk aiab=57a4naaBaaaleaacaGFXaaabeaakiaa+Lcaaaa@4380@  формула (9.1) определяет однопараметрическое семейство штампов Ξ(K) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NNdGvefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiaadUeacaGFPaaaaa@40CC@ , в качестве параметра которого выступает число микровыступов K MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4saaaa@3868@ . Штампы, принадлежащие к одному семейству, имеют одинаковую макроформу, а их микровыступы являются подобными.

Расчеты выполнялись для семейства жестких штампов, макроформа и поверхностный микрорельеф которых описывались соответственно функциями:

Φ 1 ( x 1 )= β 1 d (2 x 1 /d1) m 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdy0aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdaaeqaaOGaa4hk aiaadIhadaWgaaWcbaGaa4xmaaqabaGccaGFPaGaeyypa0Jae8NSdi 2aaSbaaSqaaiaa+fdaaeqaaOGaamizaiaa+HcacaGFYaGaamiEamaa BaaaleaacaGFXaaabeaakiaac+cacaWGKbGaeyOeI0Iaa4xmaiaa+L cadaahaaWcbeqaaiaad2gadaWgaaadbaGaa4xmaaqabaaaaaaa@504D@ , Φ 2 ( ξ 1 )= β 2 d (2 ξ 1 1) m 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NPdy0aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaOGaa4hk aiab=57a4naaBaaaleaacaGFXaaabeaakiaa+LcacqGH9aqpcqWFYo GydaWgaaWcbaGaa4NmaaqabaGccaWGKbGaa4hkaiaa+jdacqWF+oaE daWgaaWcbaGaa4xmaaqabaGccqGHsislcaGFXaGaa4xkamaaCaaale qabaGaamyBamaaBaaameaacaGFYaaabeaaaaaaaa@5037@ ,

где β 1 0, β 2 >0, m 1 >1, m 2 >1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NSdi2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdaaeqaaOGaeyyz ImRaa4hmaiaacYcacaaMi8UaaGjbVlaaykW7cqWFYoGydaWgaaWcba Gaa4NmaaqabaGccqGH+aGpcaGFWaGaaiilaiaaysW7caaMc8UaamyB amaaBaaaleaacaGFXaaabeaakiabg6da+iaa+fdacaGGSaGaaGjbVl aaykW7caWGTbWaaSbaaSqaaiaa+jdaaeqaaOGaeyOpa4Jaa4xmaaaa @5A71@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  безразмерные параметры.

Нормальная компонента главного вектора (погонная сила) и главный момент внешних сил, приложенных к штампу, задавались в виде:

F 2 =f E * d MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOramaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFYaaabeaakiabg2da9iab gkHiTiaadAgacaaMb8UaamyramaaCaaaleqabaGaaiOkaaaakiaads gaaaa@45D8@ , M 3 =e F 2 d MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFZaaabeaakiabg2da9iaa dwgacaWGgbWaaSbaaSqaaiaa=jdaaeqaaOGaamizaaaa@436D@ ,

где f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOzaaaa@3883@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  безразмерный параметр внешней нагрузки; e MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyzaaaa@3882@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  безразмерный параметр, характеризующий эксцентриситет равнодействующей внешней нагрузки относительно центра приведения x c =(0.5d,h) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfeGaa8hEamaaCaaaleqabaGaam4yaaaakiabg2da9Gqb aiaa+HcacaGFWaGaaiOlaiaa+vdacaaMc8UaamizaiaacYcacaWGOb Gaa4xkaaaa@47C9@ .

Необходимое количество L MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitaaaa@3869@  граничных элементов на Γ p MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae83KdC0aaS baaSqaaiaadchaaeqaaaaa@3A25@  определялось путем сравнения решений, полученных на вложенных сетках при их двукратном последовательном измельчении. При решении задач для семейства штампов Ξ(K) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NNdGvefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiaadUeacaGFPaaaaa@40CD@  каждый микровыступ аппроксимировался на сетке из 256 граничных элементов. Наибольшее общее количество элементов сетки для штампа с K=4096 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4saiabg2da9e rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=rdacaWFWaGaa8xoaiaa=zda aaa@41D1@  микровыступами составило L= 2 20 =1048576 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamitaiabg2da9e rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=jdadaahaaWcbeqaaiaa=jda caWFWaaaaOGaeyypa0deaaaaaaaaa8qacaWFXaGaa8hmaiaa=rdaca WF4aGaa8xnaiaa=DdacaWF2aaaaa@4765@  элементов.

Установлен ряд закономерностей процесса вдавливания штампов семейства Ξ(K) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NNdGvefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiaadUeacaGFPaaaaa@40CD@  в упругую полосу. Рассмотрим процесс вдавливания в полосу штампа, имеющего K MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4saaaa@3868@  микровыступов, при изменении параметра внешней нагрузки f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOzaaaa@3883@  в интервале [0, f * ] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfaGaa83waiaa=bdacaGGSaGaamOzamaaCaaaleqabaGa aiOkaaaakiaa=1faaaa@420F@  и проведем численный анализ зависимости от этого параметра следующих характеристик контактного взаимодействия: относительной фактической площади контакта

s Γ p [ σ 22 >0] a d ξ 1 /d= B K 1 (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4CaiabggMi6o aapefabaqefqvATv2CG4uz3bIuV1wyUbacfeGaa83waGGaaiab+n8a ZnaaBaaaleaaiuaacaqFYaGaa0NmaaqabaGccqGH+aGpcaqFWaGaa8 xxaiaayIW7daWgaaWcbaGaamyyaaqabaGccaaMi8UaamizaiaaygW7 cqGF+oaEdaWgaaWcbaGaa0xmaaqabaaabaGae43KdC0aaSbaaWqaai aadchaaeqaaaWcbeqdcqGHRiI8aOGaai4laiaadsgacqGH9aqpcaWG cbWaa0baaSqaaiaadUeaaeaacaqFXaaaaOGaa0hkaiaadAgacaqFPa aaaa@5C3D@

осадки штампа δ 2 = B K 2 (f) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hTdq2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaOGaeyyp a0JaamOqamaaDaaaleaacaWGlbaabaGaa4Nmaaaakiaa+HcacaWGMb Gaa4xkaaaa@4578@ ; угла поворота штампа φ 3 = B K 3 (f) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NXdO2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+ndaaeqaaOGaeyyp a0JaamOqamaaDaaaleaacaWGlbaabaGaa43maaaakiaa+HcacaWGMb Gaa4xkaaaa@4592@ .

Введем на [0, f * ] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfaGaa83waiaa=bdacaGGSaGaamOzamaaCaaaleqabaGa aiOkaaaakiaa=1faaaa@420F@  равномерную сетку T f = f m =mΔf,Δf= f * / M f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGMbaabeaakiabg2da9maacmaabaGaamOzamaaBaaaleaacaWG Tbaabeaakiabg2da9iaad2gacaaMc8UaeyiLdqKaamOzaiaacYcaca aMe8UaeyiLdqKaamOzaiabg2da9iaadAgadaahaaWcbeqaaiaacQca aaGccaGGVaGaamytamaaBaaaleaacaWGMbaabeaaaOGaay5Eaiaaw2 haaaaa@4EBC@  и сеточные функции B K i = R f B K i ,i=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfmGaa8NqamaaDaaaleaacaWGlbaabaGaamyAaaaakiab g2da9iaadkfadaWgaaWcbaGaamOzaaqabaGccaWGcbWaa0baaSqaai aadUeaaeaacaWGPbaaaOGaaiilaiaadMgacqGH9aqpiuaacaGFXaGa aiilaiaa+jdacaGGSaGaa43maaaa@4BC0@ , где R f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOuamaaBaaale aacaWGMbaabeaaaaa@3986@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  оператор ограничения на сетку T f MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamivamaaBaaale aacaWGMbaabeaaaaa@3988@ . Для вычисления сеточных функций производилось пошаговое нагружение штампа. При проведении расчетов полагалось, что M f =128 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamytamaaBaaale aacaWGMbaabeaakiabg2da9erbuLwBLnhiov2DGi1BTfMBaGqbaiaa =fdacaWFYaGaa8hoaaaa@423B@ .

В ходе вычислительных экспериментов наблюдалась сходимость последовательностей сеточных функций B K i ;i=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaqefqvATv2CG4uz3b IuV1wyUbacfmGaa8NqamaaDaaaleaacaWGlbaabaGaamyAaaaaiuaa kiaa+TdacaaMc8UaaGPaVlaadMgacqGH9aqpcaGFXaGaaiilaiaa+j dacaGGSaGaa43maaaa@4927@ , при увеличении количества микровыступов K MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4saaaa@3868@ . В качестве примера для семейства штампов Ξ(K) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NNdGvefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiaadUeacaGFPaaaaa@40CD@ , определяемого набором параметров ( β 1 =31 0 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NSdi2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+fdaaeqaaOGaeyyp a0Jaa43maiabgwSixlaa+fdacaGFWaWaaWbaaSqabeaacqGHsislca GF1aaaaaaa@46E4@ , β 2 =1 0 4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NSdi2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaOGaeyyp a0Jaa4xmaiaa+bdadaahaaWcbeqaaiabgkHiTiaa+rdaaaaaaa@43E7@ , m 1 = m 2 =4 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyBamaaBaaale aaruavP1wzZbItLDhis9wBH5gaiuaacaWFXaaabeaakiabg2da9iaa d2gadaWgaaWcbaGaa8NmaaqabaGccqGH9aqpcaWF0aaaaa@439A@  ), в табл. 1 приведены относительные среднеквадратичные расхождения

ε i = B K i B Q i 2 / B Q i 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8xTdu2aaS baaSqaaiaadMgaaeqaaOGaeyypa0ZaauWaaeaaruavP1wzZbItLDhi s9wBH5gaiuWacaGFcbWaa0baaSqaaiaadUeaaeaacaWGPbaaaOGaey OeI0Iaa4NqamaaDaaaleaacaWGrbaabaGaamyAaaaaaOGaayzcSlaa wQa7amaaBaaaleaaiuaacaqFYaaabeaakiaac+cadaqbdaqaaiaa+j eadaqhaaWcbaGaamyuaaqaaiaadMgaaaaakiaawMa7caGLkWoadaWg aaWcbaGaa0Nmaaqabaaaaa@52ED@ ; i=1,2,3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyAaiabg2da9e rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=fdacaGGSaGaa8NmaiaacYca caWFZaaaaa@4291@ ,

где Q=4096 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuaiabg2da9e rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=rdacaWFWaGaa8xoaiaa=zda aaa@41D7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@  максимальное количество микровыступов в серии расчетов.

 

Таблица 1. Относительные среднеквадратичные расхождения ε ˜ i =1 0 5 ε i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqk0dg9vrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGaf8xTduMbaG aadaWgaaWcbaGaamyAaaqabaGccqGH9aqpruavP1wzZbItLDhis9wB H5gaiuaacaGFXaGaa4hmamaaCaaaleqabaGaa4xnaaaakiab=v7aLn aaBaaaleaacaWGPbaabeaaaaa@48AE@

ε ˜ i MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqk0dg9vrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGaf8xTduMbaG aadaWgaaWcbaGaamyAaaqabaaaaa@3D09@

Номер

полосы

Количество микровыступов K

16

32

64

128

256

512

1024

2048

ε ˜ 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqk0dg9vrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGaf8xTduMbaG aadaWgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa4xmaaqabaaa aa@4258@

1

5218

2790

1477

788

414

206

94

33

2

8049

4020

2074

1078

543

266

122

42

3

5209

3008

1635

827

397

183

79

28

4

8116

5649

3481

1942

997

478

211

71

ε ˜ 2 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqk0dg9vrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGaf8xTduMbaG aadaWgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa4Nmaaqabaaa aa@4259@

1

1781

825

399

193

93

43

18

6

2

1659

756

354

169

81

37

16

5

3

3945

2202

1170

599

296

139

60

20

4

3844

2211

1212

637

320

152

66

22

ε ˜ 3 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqk0dg9vrFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGaf8xTduMbaG aadaWgaaWcbaqefqvATv2CG4uz3bIuV1wyUbacfaGaa43maaqabaaa aa@425A@

1

3936

1790

848

409

196

91

39

12

2

3687

1688

769

365

174

80

34

11

3

7125

3959

2092

1070

528

249

107

35

4

6973

3969

2145

1123

563

268

116

38

 

Значения параметров внешней нагрузки задавались следующими: f=51 0 5 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamOzaiabg2da9e rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=vdacqGHflY1caWFXaGaa8hm amaaCaaaleqabaGaeyOeI0Iaa8xnaaaaaaa@4548@ , e=0.05 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyzaiabg2da9e rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=bdaqaaaaaaaaaWdbiaac6ca caWFWaGaa8xnaaaa@41FE@ . Толщина полосы полагалась равной h=d MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamiAaiabg2da9i aadsgaaaa@3A74@ . Коэффициент расширения вычислительной области принимался равным k c =16 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4AamaaBaaale aacaWGJbaabeaakiabg2da9erbuLwBLnhiov2DGi1BTfMBaGqbaiaa =fdacaWF2aaaaa@41A0@ .

Графики зависимостей s= B Q 1 (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caiabg2da9i aadkeadaqhaaWcbaGaamyuaaqaaerbuLwBLnhiov2DGi1BTfMBaGqb aiaa=fdaaaGccaWFOaGaamOzaiaa=Lcaaaa@43E5@ , δ 2 = B Q 2 (f) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hTdq2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaOGaeyyp a0JaamOqamaaDaaaleaacaWGrbaabaGaa4Nmaaaakiaa+HcacaWGMb Gaa4xkaaaa@457E@  и φ 3 = B Q 3 (f) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NXdO2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+ndaaeqaaOGaeyyp a0JaamOqamaaDaaaleaacaWGrbaabaGaa43maaaakiaa+HcacaWGMb Gaa4xkaaaa@4598@  для Q=4096 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaamyuaiabg2da9e rbuLwBLnhiov2DGi1BTfMBaGqbaiaa=rdacaWFWaGaa8xoaiaa=zda aaa@41D7@  приведены соответственно на рис. 2, а MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ в. Номера кривых 1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqef4uz3r3BUb acfaqcLbuaqaaaaaaaaaWdbiaa=nbiaaa@3A19@ 4 соответствуют номерам стратифицированных упругих полос, параметры которых были указаны выше.

 

Рис. 2

 

На основании результатов вычислительных экспериментов можно предположить существование для рассмотренного семейства штампов Ξ(K) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NNdGvefq vATv2CG4uz3bIuV1wyUbacfaGaa4hkaiaadUeacaGFPaaaaa@40CD@  предельных кривых s= B 1 (f) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaGaam4Caiabg2da9i aadkeadaahaaWcbeqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa=fda aaGccaWFOaGaamOzaiaa=Lcaaaa@430F@ , δ 2 = B 2 (f) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8hTdq2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+jdaaeqaaOGaeyyp a0JaamOqamaaCaaaleqabaGaa4Nmaaaakiaa+HcacaWGMbGaa4xkaa aa@44A8@  и φ 3 = B 3 (f) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2Caerbov2D09 MBaeXatLxBI9gBaeXafv3ySLgzGmvETj2BSbqeeuuDJXwAKbsr4rNC HbGeaGqipy0df9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaq pepm0xj9as0=LqLs=xirFfpeea0=as0Fb9pgea0lrP0xe9Fve9Fve9 qapdbaqaaeGacaGaamaabeqaaeqabiabaaGcbaaccaGae8NXdO2aaS baaSqaaerbuLwBLnhiov2DGi1BTfMBaGqbaiaa+ndaaeqaaOGaeyyp a0JaamOqamaaCaaaleqabaGaa43maaaakiaa+HcacaWGMbGaa4xkaa aa@44C2@ .

Заключение. Разработанный подход к решению задач одностороннего дискретного контакта для стратифицированной упругой полосы может быть обобщен на случай пространственной задачи для стратифицированного упругого слоя.

×

About the authors

A. A. Bobylev

Lomonosov Moscow State University; Moscow Centre for Fundamental and Applied Mathematics

Author for correspondence.
Email: abobylov@gmail.com
Russian Federation, Moscow; Moscow

References

  1. Pogrebnyak A.D., Lozovan A.A., Kirik G.V. et al. Structure and Properties of Nanocomposite, Hybrid and Polymer Coatings. Moscow: LIBROKOM, 2011. 344 p. (in Russian)
  2. Goryacheva I.G. Contact Mechanics in Tribology. Dordrecht: Springer, 1998. 346 p.
  3. Argatov I.I., Dmitriev N.N. Fundamentals of the Theory of Elastic Discrete Contact. St. Petersburg: Polytechnics, 2003. 233 p. (in Russian)
  4. Barber J.R. Contact Mechanics. Cham: Springer, 2018. 585 p.
  5. Torskaya E.V. Models of Friction Interaction of Bodies with Coatings. Moscow; Izhevsk: Inst. Komp’yut. Issled., 2020. 296 p.
  6. Goryacheva I., Makhovskaya Yu. Discrete Contact Mechanics with Applications in Tribology. Amsterdam: Elsevier, 2022. 209 p.
  7. Goryacheva I.G., Tsukanov I.Y. Development of discrete contact mechanics with applications to study the frictional interaction of deformable bodies // Mech. Solids, 2020, vol. 55, no. 8, pp. 1441–1462.
  8. Bobylev A.A. Algorithm for solving discrete contact problems for an elastic strip // Mech. Solids, 2022, vol. 57, no. 7, pp. 1766–1780.
  9. Kravchuk A.S., Neittaanmäki P.J. Variational and Quasi-Variational Inequalities in Mechanics. Dordrecht: Springer, 2007. 329 p.
  10. Wriggers P. Computational Contact Mechanics. Berlin: Springer, 2006. 518 p.
  11. Yastrebov V.A. Numerical Methods in Contact Mechanics. N.Y.: ISTE/Wiley, 2013. 416 p.
  12. Bobylev A.A. Numerical construction of the transform of the kernel of the integral representation of the Poincaré–Steklov operator for an elastic strip // Differ. Eqns., 2023, vol. 59, no. 1, pp. 119–134.
  13. Vorovich I.I., Aleksandrov V.M., Babeshko V.A. Nonclassical Mixed Problems of the Theory of Elasticity. Moscow: Nauka, 1974. 456 p. (in Russian)
  14. Aizikovich S.M. Statical contact problems for a depth-inhomogeneous base // in: Mechanics of Contact Interaction. Moscow: FIZMATLIT, 2001. pp. 199–213. (in Russian)
  15. Aizikovich S.M., Aleksandrov V.M., Belokon’ A.V. et al. Contact Problems of the Elasticity Theory for Inhomogeneous Media. Moscow: FIZMATLIT, 2006. 236 p. (in Russian)
  16. Nikishin V.S. Statical contact problems for multilayer elastic bodies // in: Mechanics of Contact Interaction. Moscow: FIZMATLIT, 2001. pp. 214–233. (in Russian)
  17. Vatulyan A.O., Plotnikov D.K. On a Study of the Contact Problem for an Inhomogeneous Elastic Strip // Mech. Solids, 2021, vol. 56, no. 7, pp. 1379–1387.
  18. Babeshko V.A., Glushkov E.V., Glushkova N.V. Methods of Constructing Green’s Matrix of a Stratified Elastic Half-Space // USSR Comput. Math. Math. Phys., 1987, vol. 27, no. 1, pp. 60–65.
  19. Bobylev A.A. Computing a transfer function of the Poincaré–Steklov Operator for a functionally graded elastic strip // Moscow Univ. Mech. Bull., 2023, vol. 78, no. 5, pp. 134–142.
  20. Khludnev A.M. Elasticity Problems in Non-Smooth Domains. Moscow: FIZMATLIT, 2010. 252 p. (in Russian)
  21. Eck C., Jarušek J., Krbec M. Unilateral Contact Problems: Variational Methods and Existence Theorems. Boca Raton: CRC Press, 2005. 398 p.
  22. Wang Q.J., Zhu D. Interfacial Mechanics: Theories and Methods for Contact and Lubrication. Boca Raton: CRC Press, 2019. 636 p.
  23. Wang Q.J., Sun L., Zhang X. et al. FFT-based methods for computational contact mechanics // Front. Mech. Eng., 2020, vol. 6, no. 61, pp. 92–113.
  24. Bobylev A.A. Application of the conjugate gradient method to solving discrete contact problems for an elastic half-plane // Mech. of Solids, 2022, vol. 57, no. 2, pp. 317–332.
  25. Polonsky I.A., Keer L.M. A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques // Wear, 1999, vol. 231, no. 2, pp. 206–219.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1

Download (113KB)
3. Fig. 2

Download (251KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».