Задача одностороннего дискретного контакта для стратифицированной упругой полосы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрена задача о вдавливании жесткого штампа конечных размеров с поверхностным микрорельефом в стратифицированную упругую полосу. Приведены граничные вариационные формулировки задачи с использованием оператора Пуанкаре–Стеклова, отображающего нормальные напряжения в нормальные перемещения. При аппроксимации этого оператора применялось дискретное преобразование Фурье, численная реализация которого производилась с помощью алгоритмов быстрого преобразования Фурье. Для вычисления передаточной функции использовалась вариационная формулировка краевой задачи для трансформант перемещений. В результате аппроксимации исходной контактной задачи получена задача квадратичного программирования с ограничениями виде равенств и неравенств, для численного решения которой применялся алгоритм на основе метода сопряженных градиентов. Установлен ряд закономерностей контактного взаимодействия.

Полный текст

Доступ закрыт

Об авторах

А. А. Бобылев

Московский государственный университет им. М.В. Ломоносова; Московский центр фундаментальной и прикладной математики

Автор, ответственный за переписку.
Email: abobylov@gmail.com
Россия, Москва; Москва

Список литературы

  1. Погребняк А.Д., Лозован А.А., Кирик Г.В. и др. Структура и свойства нанокомпозитных, гибридных и полимерных покрытий. М.: ЛИБРОКОМ, 2011. 344 с.
  2. Горячева И.Г. Механика фрикционного взаимодействия. М.: Наука, 2001. 478 с.
  3. Аргатов И.И., Дмитриев Н.Н. Основы теории упругого дискретного контакта. СПб: Политехника, 2003. 233 с.
  4. Barber J.R. Contact Mechanics. Cham: Springer, 2018. 585 p.
  5. Торская Е.В. Модели фрикционного взаимодействия тел с покрытиями. М.;Ижевск: Ин-т компьют. исслед., 2020. 296 с.
  6. Goryacheva I., Makhovskaya Yu. Discrete Contact Mechanics with Applications in Tribology. Amsterdam: Elsevier, 2022. 209 p.
  7. Горячева И.Г., Цуканов И.Ю. Развитие механики дискретного контакта с приложениями к исследованию фрикционного взаимодействия деформируемых тел // ПММ. 2020. Т. 84. Вып. 6. С. 757–789.
  8. Бобылев А.А. Алгоритм решения задач дискретного контакта для упругой полосы // ПММ. 2022. Т. 86. Вып. 3. С. 404–423.
  9. Kravchuk A.S., Neittaanmäki P.J. Variational and Quasi-Variational Inequalities in Mechanics. Dordrecht: Springer, 2007. 329 p.
  10. Wriggers P. Computational Contact Mechanics. Berlin: Springer, 2006. 518 p.
  11. Yastrebov V.A. Numerical Methods in Contact Mechanics. New York: ISTE/Wiley, 2013. 416 p.
  12. Бобылев А.А. Численное построение трансформанты ядра интегрального представления оператора Пуанкаре–Стеклова для упругой полосы // Диффер. ур-я. 2023. Т. 59. № 1. С. 115–129.
  13. Ворович И.И., Александров В.М., Бабешко В.А. Неклассические смешанные задачи теории упругости. М.: Наука, 1974. 456 с.
  14. Айзикович С.М. Статические контактные задачи для неоднородного по глубине основания // в кн.: Механика контактных взаимодействий. М.: ФИЗМАТЛИТ, 2001. С. 199–213.
  15. Айзикович С.М., Александров В.М., Белоконь А.В. и др. Контактные задачи теории упругости для неоднородных сред. М.: ФИЗМАТЛИТ, 2006. 236 с.
  16. Никишин В.С. Статические контактные задачи для многослойных тел // в кн.: Механика контактных взаимодействий. М.: ФИЗМАТЛИТ, 2001. С. 214–233.
  17. Ватульян А.О., Плотников Д.К. К исследованию контактной задачи для неоднородной упругой полосы // ПММ. 2021. Т. 85. Вып. 3. С. 283–293.
  18. Бабешко В.А., Глушков Е.В., Глушкова Н.В. Методы построения матриц Грина для стратифицированного упругого полупространства // ЖВММФ. 1987. Т. 27. № 1. С. 93–101.
  19. Бобылев А.А. О вычислении передаточной функции оператора Пуанкаре-Стеклова для функционально-градиентной упругой полосы // Вестн. Моск. ун-та. Матем. Механ. 2023. № 5. С. 52–60.
  20. Хлуднев А.М. Задачи теории упругости в негладких областях. М.: ФИЗМАТЛИТ, 2010. 252 с.
  21. Eck C., Jarušek J., Krbec M. Unilateral Contact Problems: Variational Methods and Existence Theorems. Boca Raton: CRC Press, 2005. 398 p.
  22. Wang Q.J., Zhu D. Interfacial Mechanics: Theories and Methods for Contact and Lubrication. Boca Raton: CRC Press, 2019. 636 p.
  23. Wang Q.J., Sun L., Zhang X. et al. FFT-based methods for computational contact mechanics // Front. Mech. Eng. 2020. V. 6. № 61. P. 92–113.
  24. Бобылев А.А. Применение метода сопряженных градиентов к решению задач дискретного контакта для упругой полуплоскости // Изв. РАН. МТТ. 2022. № 2. С. 135–153.
  25. Polonsky I.A., Keer L.M. A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques // Wear. 1999. V. 231. № 2. P. 206–219.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1

Скачать (113KB)
3. Рис. 2

Скачать (251KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».