On precession of Lagrange’s top
- Autores: Rozenblat G.M.1
-
Afiliações:
- Moscow State Automobile and Road Technical University (MADI)
- Edição: Volume 88, Nº 1 (2024)
- Páginas: 34-52
- Seção: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/260200
- DOI: https://doi.org/10.31857/S0032823524010035
- EDN: https://elibrary.ru/YUSNWJ
- ID: 260200
Citar
Resumo
The article describes the results obtained for the upper and lower bounds (estimates) for the apsidal angle (precession angle) in the theory of the motion of the heavy symmetrical solid body about fixed point (Lagrange’s case) for arbitrary initial conditions and parameters of the body. All regions of initial conditions is divided into two sets. In the first set there is a direct precession of the top, in the second set there is a retrograde precession of the top.
Palavras-chave
Texto integral

Sobre autores
G. Rozenblat
Moscow State Automobile and Road Technical University (MADI)
Autor responsável pela correspondência
Email: gr51@mail.ru
Rússia, Moscow
Bibliografia
- Klein F., Sommerfeld A. Uber die Theorie des Kreisels. N.Y.: E.A. Johnson Reprint Corp., 1965. 966 p.
- Rozenblat G.M. Estimates of the average angular velocity of the precession of Lagrange’s top // Dokl. Phys., 2019, vol. 64, no. 3, pp. 114–119.
- Zhuravlev V.Ph. K voprosu ob ocenkah effekta Magnusa// Dokl. AN SSSR, 1976, vol. 226, no. 3, pp. 541–543. (in Russian)
- Zhuralev V.Ph., Rozenblat G.M. Paradoxes, Counterexamples and Mistakes in Mechanics. Moscow: Lenand, 2017. 240 p. (in Russian)
- Yehia H.M. On the Relation between the First and Second Moments of Distributions // J. Phys. A: Math.&General, 2002, vol. 35, no. 30, pp. 6505–6508.
- Scarpello G.M., Ritelli D. Motions about a fixed point by hypergeometric functions: new non-complex analytical solutions and integration of the herpolhode // Celest. Mech. Dyn. Astr., 2018, vol. 130, art. no. 42. doi: 10.1007/s10569-018-9837-5
- Arhangelsky Yu.A. Analytical Dynamics of Rigid Body. Moscow: Nauka, 1977, 328 p. (in Russian)
- Kohn W. Contour integration in the theory of spherical pendulum and the heavy symmetrical top // Trans. Amer. Math. Soc., 1946, vol. 59, pp. 107–131.
- Hadamard J. Sur la precession dans le movement d’un corps pesant de revolution fixe par un point de son axe // Bull. des Sci. Math., 1895, vol. 19, pp. 228–230.
- MacMillan W.D. Dynamics of Rigid Bodies. N.Y.; London: 1936. 478 p.
- Golubev Yu.Ph. Fundamentals of Theoretical Mechanics. Moscow: MSU Publ., 2000. 719 p. (in Russian)
- De la Vallee Poussin Ch.-J. Lecons de Mecanique Analytique. 1925. T. 2, 328 p.
- Diaz J.B., Metcalf F.T. On a result of Hadamard concerning the sign of precession of a heavy symmetrical top // Proc. Amer. Math. Soc., 1962, vol. 13, pp. 669–670.
- Diaz J.B., Metcalf F.T. Upper and lower bounds for the apsidal angle in the theory of the heavy symmetrical top // Arch. Rational Mech. Anal., 1964, vol. 16, pp. 214–229.
- Leimanis E. The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. Berlin: Springer, 1965. 337 p.
- Lidov M.L. Course of Lectures on Theoretical Mechanics. Moscow: Fizmatlit, 2001. 478 p. (in Russian)
- Chetaev N.G. Theoretical Mechanics. Moscow: Nauka, 1987. 368 p. (in Russian)
Arquivos suplementares
