A Method for Detecting Nanometer Length Oscillations in Fiber-Optic Sensors Using a Tracking Tandem Low-Coherent Interferometer
- Authors: Volkov P.V.1, Goryunov A.V.1, Luk’yanov A.Y.1, Semikov D.A.1, Tertyshnik A.D.1
-
Affiliations:
- Institute of Physics of Microstructures, Russian Academy of Sciences
- Issue: No 6 (2023)
- Pages: 69-73
- Section: ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА
- URL: https://journals.rcsi.science/0032-8162/article/view/233263
- DOI: https://doi.org/10.31857/S0032816223040067
- EDN: https://elibrary.ru/SUMVEN
- ID: 233263
Cite item
Abstract
A method for detecting changes in the length of an optical cavity is proposed for fiber-optic sensors based on the Fabry–Perot interferometer scheme. The possibility of detecting oscillations of the resonator length at the subnanometer level in the frequency band 1.5–300 kHz is shown. The sensitivity was 0.3 nm in standard deviation. The proposed scheme makes it possible to reliably distinguish high-frequency oscillations against the background of slow drifts of the sensor length caused by temperature fluctuations or deformations.
About the authors
P. V. Volkov
Institute of Physics of Microstructures, Russian Academy of Sciences
Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia
A. V. Goryunov
Institute of Physics of Microstructures, Russian Academy of Sciences
Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia
A. Yu. Luk’yanov
Institute of Physics of Microstructures, Russian Academy of Sciences
Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia
D. A. Semikov
Institute of Physics of Microstructures, Russian Academy of Sciences
Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia
A. D. Tertyshnik
Institute of Physics of Microstructures, Russian Academy of Sciences
Author for correspondence.
Email: volkov@ipmras.ru
603950, Nizhny Novgorod, Russia
References
- Zhang Z., Liao C., Tang J., Bai Z., Guo K., Hou M., He J., Wang Y., Liu S., Zhang F., Wang Y. // J. Light. Technol. 2017. V. 35. № 18. P. 4067. https://doi.org/10.1109/JLT.2017.2710210
- Ma J., Jin W., Xuan H., Wang C., Ho H.L. // Opt. Lett. 2014. V. 39. № 16. P. 4769. https://doi.org/10.1364/OL.39.004769
- Liu Q., Jing Z., Liu Y., Li A., Xia Z., Peng W. // Opt. Express. 2019. V. 27. № 26. P. 38191. https://doi.org/10.1364/OE.381197
- Yu H., Luo Z., Zheng Y., Ma J., Li Z., Jiang X. // J. Light. Technol. 2019. V. 37. № 10. P. 2261. https://doi.org/10.1109/JLT.2019.2901845
- Tosi D. // J. Light. Technol. 2016. V. 34. № 15. P. 3622. https://doi.org/10.1109/JLT.2016.2575041
- Yang Y., Wang Y., and Chen K. // Opt. Express. 2021. V. 29. № 5. P. 6768. https://doi.org/10.1364/OE.415750
- Digonnet M.J.F., Akkaya O.C., Kino G.S., Solgaard O. // Imaging Applied Optics Technical Digest. 2012. Stu3F. 1. https://doi.org/10.1364/SENSORS.2012.Stu3F.1
- Zhou C., Letcher S.V., Shukla A. // The J. Acoust. Soc. Am. 1995. V. 98. № 2. P. 1042. https://doi.org/10.1121/1.413669
- Akkaya O.C., Akkaya O., Digonnet M.J.F., Kino G.S., Solgaard O. // J. Microelectromechanical Syst. 2012. V. 21. № 6. P. 1347. https://doi.org/10.1109/JMEMS.2012.2196494
- Kilic O., Digonnet M., Kino G., Solgaard O. // Meas. Sci. Technol. 2007. V. 18. № 10. P. 3049. https://doi.org/10.1088/0957-0233/18/10/S01
- Dandridge A., Tveten A., Giallorenzi T. // IEEE J. Quantum Electron. 1982. V. 18. № 10. P. 1647.
- Wang L., Zhang M., Mao X., Liao Y. // Interferometry XIII: Techniques and Analysis. 2006. V. 62921E. https://doi.org/10.1117/12.678455
- Chen K., Yu Z., Gong Z., Yu Q. // Opt. Lett. 2018. V. 43. № 20. P. 5038. https://doi.org/10.1364/OL.43.005038
- Volkov P., Semikov D., Goryunov A., Luk’yanov A., Tertyshnik A., Vopilkin E., Krayev S. // Sensors Actuators A: Phys. 2020. V. 316. P. 112385. https://doi.org/10.1016/j.sna.2020.112385
- Volkov P., Goryunov A., Luk’yanov A., Tertyshnik A., Baidakova N., Luk’yanov I. // Optik. 2013. V. 124. № 15. P. 1982. https://doi.org/10.1016/j.ijleo.2012.06.043
- Volkov P., Lukyanov A., Goryunov A., Semikov D., Vopilkin E., Kraev S., Okhapkin A., Tertyshnik A., Arkhipova E. // Sensors. 2021. V. 21. № 21. P. 7343. https://doi.org/10.3390/s21217343
Supplementary files
