Оценка возможностей распределенной оптоволоконной системы регистрации со спиральным волокном при проведении межскважинного сейсмоакустического просвечивания

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Для расширения возможностей решения геофизических задач с помощью оптоволоконных распределенных систем регистрации акустических волн выполнено сравнение сигналов, полученных традиционными гидрофонами и распределенной оптоволоконной системой с применением кабеля, содержащего прямое и спиральное волокна. Исследования проведены способом межскважинного сейсмического просвечивания. Рассмотрена возможность выделения прямых и преломленных головных волн, зарегистрированных распределенной оптоволоконной системой, и получения с их помощью геолого-геофизической информации о состоянии массива. Показано, что при использовании спирально уложенного волокна первые вступления прямой продольной волны могут быть прослежены для проведения межскважинного просвечивания массива и оценки скоростной характеристики способом межскважинной томографии на прямых волнах. Как для прямого, так и для спирального волокна суммирование головных волн позволяет получать достаточно четкие вступления головной волны даже в сухой части скважины и использовать его для определения скоростей продольных волн околоскважинного массива. Состав волнового поля межскважинного просвечивания зависит от диаграмм направленности как источника, так и приемника упругих колебаний. Применение систем многократных перекрытий позволяет варьировать состав регистрируемого волнового поля за счет взаимного расположения приемной и возбуждающей линий в зависимости от решаемых задач.

About the authors

А. Чугаев

Горный институт УрО РАН

Author for correspondence.
Email: chugaev@mi-perm.ru
Россия, 614007, Пермь, ул. Сибирская, 78-А

А. Кузнецов

Горный институт УрО РАН

Email: chugaev@mi-perm.ru
Россия, 614007, Пермь, ул. Сибирская, 78-А

References

  1. Mateeva A., Mestayer J., Cox B., Kiyashchenko D., Wills P., Lopez J., Grandi S., Hornman K., Lumens P., Franzen A., Hill D., Roy J. Advances in distributed acoustic sensing (DAS) for VSP // SEG Technical Program Expanded Abstracts 2012. Society of Exploration Geophysicists, 2012. https://doi.org/10.1190/segam2012-0739.1
  2. Cai Z., Yu G., Zhang Q., Zhao Y., Chen Y., Jin Y., Zhao H. Comparative Research between DAS-VSP and Conventional VSP Data // SEG Global Meeting Abstracts. 2016. P. 81. https://doi.org/10.1190/RP2016-022
  3. Судакова М.С., Белов М.В., Понимаскин А.О., Пирогова А.С., Токарев М.Ю., Колубакин А.А. // Геофизика. 2021. № 6. С. 110. EDN: RNPIBI
  4. Gorshkov B.G., Alekseev A.E., Simikin D.E., Taranov M.A., Zhukov K.M., Potapov V.T. // Sensors. 2022 V. 22. P. 9482.https://doi.org/10.3390/s22239482
  5. Bakulin A., Golikov P., Smith R., Erickson K., Silvestrov I., Al-Ali M. Smart DAS uphole acquisition system for near-surface characterization and imaging // SEG Technical Program Expanded Abstracts. 2018. P. 201. https://doi.org/10.1190/segam2018-2995883.1
  6. Чугаев А.В., Тарантин М.В., Санфиров И.А. // Геология и геофизика. 2023. Т. 64. № 2. С. 293. EDN: MMQNLIhttps://doi.org/10.15372/GiG2022119
  7. Чугаев А.В., Кузнецов А.И. // Горное эхо. 2022. № 3 (88). С. 42. EDN: DYLFGI.https://doi.org/10.7242/echo.2022.3.7
  8. Bona A., Dean T., Correa J., Pevzner R., Tertyshnikov K.V., Van Zaanen L. // 79th EAGE Conference and Exhibition 2017. Netherlands: EAGE Publications BV, 2017. https://doi.org/10.3997/2214-4609.201701200
  9. Parker T., Shatalin S., Farhadiroushan M. // First Break. 2014. V. 32 (2). P. 61. https://doi.org/10.3997/1365-2397.2013034
  10. Kuvshinov B.N. // Geophys Prospect. 2016. V. 64 (3). P. 671. https://doi.org/10.1111/1365-2478.12303
  11. Innanen K. Determination of seismic-tensor strain from Helical Wound Cable-Distributed Acoustic Sensing cable with arbitrary and nested-helix winds // SEG Technical Program Expanded Abstracts 2017. Society of Exploration Geophysicists, 2017. P. 926. https://doi.org/10.1190/segam2017-17664060.1
  12. Egorov A., Charara M., Alfataierge E., Bakulin A. Realistic modeling of surface seismic and VSP using DAS with straight and shaped fibers of variable gauge length // First International Meeting for Applied Geoscience & Energy Expanded Abstracts. USA, OK, Tulsa: Society of Exploration Geophysicists, 2021. P. 184. https://doi.org/10.1190/segam2021-3576626.1
  13. Чугаев А.В., Тарантин М.В. // Горные науки и технологии. 2023. Т. 8. № 1. https://doi.org/10.17073/2500-0632-2022-06-10
  14. Correa J., Egorov A., Tertyshnikov K., Bona A., Roman R., Dean T., Freifeld B., Marshall S. // The Leading Edge. 2017. V. 36. P. 962. https://doi.org/10.1190/tle36120994a1.1
  15. Чугаев А.В., Санфиров И.А., Тарантин М.В., Томилов К.Ю. // Геофизика. 2020. № 5. С. 4. EDN: IVWWVL

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (205KB)
3.

Download (230KB)
4.

Download (139KB)
5.

Download (1MB)
6.

Download (511KB)
7.

Download (2MB)

Copyright (c) 2023 А.В. Чугаев, А.И. Кузнецов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies