Микропластик в почвах Холмов Тала, Восточная Антарктида
- Авторы: Кухарчик Т.И.1, Какарека С.В.1, Рябычин К.О.1
-
Учреждения:
- Институт природопользования Национальной академии наук Беларуси
- Выпуск: № 3 (2024)
- Страницы: 493-505
- Раздел: ДЕГРАДАЦИЯ, ВОССТАНОВЛЕНИЕ И ОХРАНА ПОЧВ
- URL: https://journals.rcsi.science/0032-180X/article/view/264073
- DOI: https://doi.org/10.31857/S0032180X24030098
- EDN: https://elibrary.ru/YHXTGQ
- ID: 264073
Цитировать
Аннотация
Впервые на примере оазиса Вечерний, Холмы Тала, Земля Эндерби получены данные о содержании частиц микропластика (менее 5 мм) в почвах Восточной Антарктиды. Проанализировано 7 проб, отобранных с глубины 0–15 см. Исследовали две фракции почв (<1 мм и 1–5 мм) в трехкратной повторности (42 индивидуальные навески). Методика выделения частиц микропластика включала просеивание почв, плотностное разделение в растворе хлорида цинка, центрифугирование, вакуумную фильтрацию и микроскопический анализ. Для фильтрации использовали фильтры из стекловолокна с диаметром пор 1.6 мкм. Количественную оценку частиц микропластика осуществляли с помощью микроскопа, цифровой камеры и соответствующего программного обеспечения. Установлено, что частицы микропластика присутствуют во всех проанализированных пробах. Их количество варьирует от 66 до 1933 ед./кг сухой почвы. В большинстве случаев преобладают частицы размером <1 мм, на долю которых приходится от 70 до 100%. В 70% случаев доминируют волокна, в 30% – фрагменты неправильной формы пластмасс; пленки встречаются единично. Отсутствует четко выраженная приуроченность повышенного количества частиц микропластика к объектам инфраструктуры, что может быть следствием влияния других факторов, в том числе локального и дальнего переноса.
Ключевые слова
Полный текст

Об авторах
Т. И. Кухарчик
Институт природопользования Национальной академии наук Беларуси
Автор, ответственный за переписку.
Email: tkukharchyk@gmail.com
ORCID iD: 0000-0003-3434-1244
Белоруссия, Минск
С. В. Какарека
Институт природопользования Национальной академии наук Беларуси
Email: tkukharchyk@gmail.com
Белоруссия, Минск
К. О. Рябычин
Институт природопользования Национальной академии наук Беларуси
Email: tkukharchyk@gmail.com
Белоруссия, Минск
Список литературы
- Абакумов Е.В. Гранулометрический состав почв Западной Антарктики // Почвоведение. 2010. № 3. C. 324–332. https://doi.org/10.1134/S1064229310030075
- Абакумов Е.В., Парникоза И.Ю., Лупачев А.В., Лодыгин Е.Д., Габов Д.Н., Кунах В.А. Содержание полициклических ароматических углеводородов в почвах окрестностей антарктических станций // Гигиена и санитария. 2015. Т. 94. № 7. С. 20–25.
- Горячкин С.В., Мергелов Н.С., Таргульян В.О. Генезис и география почв экстремальных условий: элементы теории и методические подходы // Почвоведение. 2019. № 1. С. 5–19. https://doi.org/10.1134/S0032180X19010040
- Кухарчик Т.И., Какарека С.В., Гигиняк Ю.Г. Почвы полуострова Брокнес, Восточная Антарктида // Почвоведение. 2022. № 12. C. 1473–1488. https://doi.org/10.31857/S0032180X22100513
- Кухарчик Т.И., Чернюк В.Д. Загрязнение почв микропластиком при производстве пенополистирола // Почвоведение. 2022. № 3. С. 370–380. https://doi.org/10.31857/S0032180X2203008X
- Мергелов Н.С. Почвы влажных долин в оазисах Ларсеманн и Вестфолль (Земля Принцессы Елизаветы, Восточная Антарктида) // Почвоведение. 2014. № 9. С. 1027–1045. https://doi.org/10.7868/S0032180X14090093
- Терехова В.А. Биотестирование экотоксичности почв при химическом загрязнении: современные подходы к интеграции для оценки экологического состояния (обзор) // Почвоведение. 2022. № 5. С. 586-599. https://doi.org/10.31857/S0032180X22050094
- Alekseev I., Abakumov E. Content of trace elements in soils of Eastern Antarctica: variability across landscapes//Arch Environ Contam Toxicol. 2021. V. 80. P. 368–388. https://doi.org/10.1007/s00244-021-00808-4
- Allen S., Allen D., Baladima F., Phoenix V.R., Thomas J.L., Le Roux G., Sonke J.E. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi Observatory // Nat Commun. 2021. V. 12(1). P. 7242. https://doi.org/10.1038/s41467-021-27454-7.
- Amaro E., Padeiro A., Mão de Ferro A., Mota A.M., Leppe M., Verkulich S., Hughes K.A., Peter H-U., Canário J. Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic // Marine Poll. Bull. 2015. V. 97. P. 523–527. https://doi.org/10.1016/j.marpolbul.2015.05.018.
- Aves A.R., Revell L.E., Gaw S., Ruffell H., Schuddeboom A., Wotherspoon N.E., LaRue M., McDonald A.J. First evidence of microplastics in Antarctic snow // The Cryosphere. 2022. V. 16. P. 2127–2145. https://doi.org/10.5194/tc-16-2127-2022
- Bergami E., Rota E., Caruso T., Birarda G., Vaccari L., Corsi I. Plastics everywhere: first evidence of polystyrene fragments inside the common Antarctic collembolan Cryptopygus antarcticus // Biol. Lett. 2020. V. 16. P. 20200093. http://dx.doi.org/10.1098/rsbl.2020.0093
- Bessa F., Ratcliffe N., Otero V., Sobral P., Marques J.C., Waluda C.M., Trathan P.N., Xavier J.C. Microplastics in gentoo penguins from the Antarctic region // Sci Rep. 2019. V. 9. P. 14191. https://doi.org/10.1038/s41598-019-50621-2
- Brahney J., Mahowald N., Prank M., Cornwell G., Klimont Z., Matsui H., Prather K.A. Constraining the atmospheric limb of the plastic cycle // P. Natl. Acad. Sci. USA. 2021. V. 118. P. e2020719118. https://doi.org/10.1073/pnas.2020719118.
- Caruso G., Bergami E., Singh N., Corsi I. Plastic occurrence, sources, and impacts in Antarctic environment and biota // Water Biol. Security. 2022. V. 1. P. 100034. https://doi.org/10.1016/j.watbs.2022.100034.
- Chen G., Feng Q., Wang J. Mini-review of microplastics in the atmosphere and their risks to humans // Sci. Total Environ. 2020. V. 703. P. 135504. https://doi.org/10.1016/j.scitotenv.2019.135504.
- Chen Y., Leng Y., Liu X., Wang J. Microplastic pollution in vegetable farmlands of suburb Wuhan, central China // Environ Pollut. 2020. V. 257. https://doi.org/10.1016/j.envpol.2019.113449
- Cohen N., Radian A. Microplastic Textile fibers accumulate in sand and are potential sources of micro(nano)plastic pollution // Environ Sci Technol. 2022. V. 56. P. 17635–17642. https://doi.org/10.1021/acs.est.2c05026.
- Corradini F., Meza P., Eguiluz R., Casado F., Huerta-Lwanga E., Geissen V. Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal // Sci. Total Environ. 2019. V. 671. P. 411–420. https://doi.org/10.1016/j.scitotenv.2019.03.368
- Cunningham E.M., Ehlers S.M., Dick J.T., Sigwar J.D., Linse K., Dick J.J., Kiriakoulakis K. High abundances of microplastic pollution in deep-sea sediments: evidence from Antarctica and the southern ocean // Environ. Sci. Technol. 2020. V. 54(21). P. 13661–13671. https://doi.org/10.1021/acs.est.0c03441
- Cunningham E.M., Seijo N.R., Altieri K.E., Audh R.R., Burger J.M., Bornman T.G., Fawcett S., Gwinnett C.M.B., Osborne A.O., Woodall L.C. The transport and fate of microplastic fibres in the Antarctic: The role of multiple global processes // Front. Mar. Sci. 2022. V. 9. P.1056081. https://doi.org/10.3389/fmars.2022.1056081
- Eriksson C., Burton H. Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island // Ambio. 2003. V. 32(6). P. 380-4. https://doi.org/10.1579/0044-7447-32.6.380.
- Fan W., Qiu C., Qu Q., Hu X., Mu L., Gao Z., Tang X. Sources and identification of microplastics in soils // Soil & Environmental Health. 2023. V. 1(2). P. 100019. https://doi.org/10.1016/j.seh.2023.100019.
- Franeker J.A., Bell P.J. Plastic ingestion by petrels breeding in Antarctica // Mar. Pollut. Bull. 1988. V. 19. P.672–674.
- González-Pleiter M., Edo C., Velázquez D., Casero-Chamorro M.C., Leganés F., Quesada A., Fernández-Piñas F., Rosal R. First detection of microplastics in the freshwater of an Antarctic Specially Protected Area // Mar. Pollut. Bull. 2020. V. 161. https://doi.org/10.1016/j.marpolbul.2020.111811
- González-Pleiter M., Lacero, G., Edo C., Lozoya J.P., Leganés F., Fernández-Piñas F., Rosal R., Teixeira-de-Mello F. A Pilot Study about microplastics and mesopelagic in an Antarctic Glacier // Cryosphere. 2021. V. 15. P. 2531–2539. https://doi.org/10.5194/tc-15-2531-2021
- Grause G., Kuniyasu Y., Chien M.F., Inoue C. Separation of microplastic from soil by centrifugation and its application to agricultural soil // Chemosphere. 2022. V. 288(Pt 3). P. 132654. https://doi.org/10.1016/j.chemosphere.2021.132654.
- He D., Luo Y., Lu S., Liu M., Song Y., Lei L. Microplastics in soils: Analytical methods, pollution characteristics and ecological risks // Trends in Analytical Chemistry. 2018. V. 109. Р. 163–172. https://doi.org/10.1016/j.trac.2018.10.006
- Imhof H.K., Laforsch C., Wiesheu A.C., Schmid J., Anger P.M., Niessner R., Ivleva N.P. Pigments and plastic in limnetic ecosystems: A qualitative and quantitative study on microparticles of different size classes // Water Res. 2016. V. 98. P. 64–74. https://doi.org/10.1016/j.watres.2016.03.015
- Ivar do Sul J.A., Barnes D., Costa M. F., Convey P., Costa E., Campos L. Plastics in the Antarctic environment: Are we looking only at the tip of the iceberg? // Oecologia Australis. 2011. V. 15(1). P. 150–170. https://doi.org/10.4257/oeco.2011.1501.11
- Kelly A., Lannuzel D., Rodemann T., Meiners K.M., Auman H.J. Microplastic contamination in east Antarctic sea ice // Mar. Pollut. Bull. 2020. V. 154. P. 11130. https://doi.org/10.1016/j.marpolbul.2020.111130.
- Kennicutt II M.C., Klein A., Montagna P., Sweet S., Wade T., Palmer T., Sericano J., Denoux G. Temporal and spatial patterns of anthropogenic disturbance at McMurdo Station, Antarctica // Environ. Res. Lett. 2010. V. 5. 10 pp.
- Kukharchyk T., Kakareka S., Giginyak Y. Trace elements in soils of oases of Enderby Land (on an example of Vecherny oasis) //Czech Polar Reports. 2018. V. 8(2). P. 162–177. https://doi.org/10.5817/CPR2018-2-13
- Lacerda A.L.d.F., Rodrigues L.d.S., van Sebille E., Rodrigues F.L., Ribeiro L., Secchi E.R., Kessler F. , Proietti M.C. Plastics in sea surface waters around the Antarctic Peninsula // Sci Rep. 2019. V.9. P. 3977. https://doi.org/10.1038/s41598-019-40311-4
- Li Q., Wu J., Zhao X., Gu X., Ji R. Separation and identification of microplastics from soil and sewage sludge // Environ. Pollut. 2019. V. 254. P. 113076. https://doi.org/10.1016/j.envpol.2019.113076
- Lin J., Rayhan A. S., Wang Y., Wu Z., Lin Y., Ke H., Li T., Chen K., Cai M. Distribution and contamination assessment of heavy metals in soils and sediments from the Fildes Peninsula and Ardley Island in King George Island, Antarctica // Polar Research. 2021. V. 40. P. 1–11. https://doi.org/10.33265/polar.v40.5270
- Liu K., Wu T., Wang X., Song Z., Zong C., Wei N., Li D. Consistent transport of terrestrial microplastics to the ocean through atmosphere // Environ. Sci. Tech. 2019. V. 53(18). P. 10612–10619. https://doi.org/10.1021/acs.est.9b03427
- Liu M., Lu S., Song Y., Lei L., Hu J., Lv W., Zhou W., Cao C., Shi H., Yang X., He D. Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China // Environ Pollut. 2018. V. 242(Pt A). P. 855–862. https://doi.org/10.1016/j.envpol.2018.07.051.
- Munari C., Infantini V., Scoponi M., Rastelli E., Corinaldesi C., Mistri M. Microplastics in the sediments of Terra Nova Bay (Rossa Sea, Antarctica) // Mar. Pollut. Bull. 2017. V. 122. P. 161–165. https://doi.org/10.1016/j.marpolbul.2017.06.039
- Perfetti-Bolaño A., Araneda A., Muñoz K., Barra R.O. Occurrence and distribution of microplastics in soils and intertidal sediments at Fildes Bay, Maritime Antarctica // Front. Mar. Sci. 2022. V. 8. P. 774055. https://doi.org/10.3389/fmars.2021.774055
- Ranjan V.P., Joseph A., Sharma H.B., Goel S. Preliminary investigation on effects of size, polymer type, and surface behaviour on the vertical mobility of microplastics in a porous media // Sci. Total Environ. 2023. V. 864. P. 161148. https://doi.org/10.1016/j.scitotenv.2022.161148.
- Reed S., Clark M., Thompson R., Hughes K.A. Microplastics in marine sediments near Rothera Research Station, Antarctica // Mar. Pollut. Bull. 2018. V. 133. P. 460–463. https://doi.org/10.1016/j.marpolbul.2018.05.068.
- Rillig M.C. Microplastic in terrestrial ecosystems and the soil? // Environ. Sci. Technol. 2012. V. 46. P. 6453–6454. https://doi.org/10.1021/es302011r
- Rota E., Bergami E., Corsi I., Bargagli R. Macro- and microplastics in the Antarctic environment: ongoing assessment and perspectives // Environments. 2022. V. 9(93). https://doi.org/10.3390/environments9070093
- Thomas D., Schütze B., Heinze W.M., Steinmetz Z. Sample preparation techniques for the analysis of microplastics in soil – A review // Sustainability. 2020. V. 12. P. 9074. https://doi.org/10.3390/su12219074
- Waldschläger K., Schüttrumpf H. Infiltration behavior of microplastic particles with different densities, sizes, and shapes—from glass spheres to natural sediments // Environ. Sci. Technol. 2020. V. 54. P. 9366–9373. https://doi.org/10.1021/acs.est.0c01722
- Waller C.L., Griffiths H.J., Waluda C.M., Thorpe S.E., Loaiza I., Moreno B., Pacherres C.O., Hughes K.A. Microplastics in the Antarctic marine system: an emerging area of research // Sci. Total Environ. 2017. V. 598. P. 220–227. https://doi.org/10.1016/j.scitotenv.2017.03.283
- Wang J., Li J., Liu S., Li H., Chen X., Peng C., Zhang P., Liu X. Distinct microplastic distributions in soils of different land-use types: A case study of Chinese farmlands // Environ. Poll. 2021.V. 269. P. 116199. https://doi.org/10.1016/j.envpol.2020.116199
- Xia L. Research progress on separation and detection methods of microplastics in soil environment // Academic Journal of Science and Technology. 2022. V.3. P. 144–147. https://doi.org/10.54097/ajst.v3i3.2918
- Xiao S., Cui Y., Brahney Ja., Mahowald N.M., Li Q. Long-distance atmospheric transport of microplastic fibres depends on their shapes // Springer Nature. 2021. LATEX template. https://doi.org/10.21203/rs.3.rs-2416912/v1
- Zhang M., Haward M., McGee J. Marine plastic pollution in the polar south: Responses from Antarctic Treaty System // Polar Record. 2020. V. 56(e36). P. 1–9. https://doi.org/10.1017/S0032247420000388
- Zhang S., Yang X., Gertsen H., Peters P., Salánki T., Geissen V. A simple method for the extraction and identification of light density microplastics from soil // Sci. Total Environ. 2018. V. 616-617. P. 1056–1065. https://doi.org/10.1016/j.scitotenv
Дополнительные файлы
