Ecological Features and Adaptive Capabilities of Cyanobacteria in Desert Ecosystems (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Deserts represent one of the most inhospitable environments on Earth, characterized by extreme daily variations in temperature, limited availability of nitrogen and water, high salinity levels, and other challenging conditions. Within these challenging arid zones, cyanobacteria emerge as a crucial group of organisms capable of actively thriving. They form complex communities known as biocrusts, which not only ensure their own survival but also contribute significantly to the persistence of other organisms within these ecosystems. Cyanobacteria, through their metabolic activities, play a significant role in the establishment and functioning of soil ecosystems. They are capable of generating primary organic matter, fixing molecular nitrogen, and synthesizing metabolites with potent biological activities. To endure the relentless pressures of their environment, desert cyanobacteria have evolved intricate adaptive strategies to enhance their resilience against multiple concurrent stresses. One such mechanism involves the production of secondary metabolites, enabling them to cope with the extreme conditions of drought and salinity. This comprehensive review delves into the ecological significance of desert cyanobacteria in the context of soil improvement. Additionally, the latest advancements in utilizing cyanobacteria to combat desertification and prevent soil degradation are elucidated.

About the authors

Yu. V. Bataeva

Tatishchev Astrakhan State University

Author for correspondence.
Email: aveatab@mail.ru
Russian Federation, Astrakhan

L. N. Grigoryan

Tatishchev Astrakhan State University

Email: aveatab@mail.ru
Russian Federation, Astrakhan

References

  1. Андреюк Е.И., Коптева Ж.Л., Занина В.В. Цианобактерии. Киев: Наук. думка, 1990. 159 с.
  2. Бананова В.А., Петров К.М., Лазарева В.Г., Унагаев А.С. Динамика процессов опустынивания Северо-Западного Прикаспия: физико-географические и социально-экономические аспекты. Атлас-монография. Национальный цифровой ресурс Руконт, 2016. 91 с.
  3. Батаева Ю.В. Влияние экстремальных гидрохимических условий на видовой состав цианобактерий в водоемах Нижней Волги. Автореф. дис… канд. биол. наук. М., 2005. 23 с.
  4. Батаева Ю.В., Григорян Л.Н., Аникина Е.А., Федотова А.В., Яковлева Л.В. К вопросу о предотвращении опустынивания и борьбы с деградацией почвенных экосистем с помощью микробно-растительных взаимодействий // Каспий и глобальные вызовы. Астрахань, 2022. С. 19–23.
  5. Батаева Ю.В., Григорян Л.Н., Богун А.Г., Кисличкина А.А., Платонов М.Е., Курашов Е.А., Крылова Ю.В., Федоренко А.Г., Андреева М.П. Биологическая активность и состав метаболитов штамма Streptomyces carpaticus К-11 RCAM04697 (SCPM-O-B-9993), перспективного для использования в растениеводстве // Микробиология. 2023. Т. 92. № 3. С. 318–328. https://doi.org/10.31857/S0026365622600730.
  6. Батаева Ю.В., Дзержинская И.С., Яковлева Л.В. Состав комплекса фототрофов в различных типах почв Астраханской области // Почвоведение. 2017. № 8. С. 973–982. https://doi.org/10.7868/S0032180X17080020.
  7. Батаева Ю.В., Курашов Е.А., Крылова Ю.В. Хромато-масс-спектрометрическое исследование экзогенных метаболитов альго-бактериальных сообществ в накопительной культуре // Вода: химия и экология. 2014. № 9. С. 59–68.
  8. Бессолицына Е.А. Биология цианобактерий. Киров, 2012. 51 с.
  9. Болышев Н.Н. Водоросли и их роль в образовании почв. М.: Изд-во Моск. ун-та, 1968. 105 с.
  10. Величко Н.В., Рабочая Д.Е., Долгих А.В., Мергелов Н.С. Цианобактерии в гиполитных горизонтах почв оазиса Ларсеманн, Восточная Антарктида // Почвоведение. 2023. № 8. С. 925–942. https://doi.org/10.31857/S0032180X2260161X
  11. Гаель А.Г., Штина Э.А. Водоросли на песках аридных областей и их роль в формировании почв // Почвоведение. 1974. № 6. С. 67–75.
  12. Гецен М.В. Водоросли в экосистемах Крайнего Севера. Л.: Наука, 1985. 163 с.
  13. Глаголева О.Б., Зенова Г.М. Экологическая характеристика бактериального звена альгобактериальных асоциаций // Почвоведение. 1992. № 3. С. 19–25.
  14. Гольдин Е.Б., Гольдина В.Г. Эколого-биологическое значение терпенов и их практическое использование: методологические аспекты // Экосистемы, их оптимизация и охрана. 2011. Вып. 4. С. 104–111.
  15. Григорян Л.Н., Батаева Ю.В. Экологические особенности и биотехнологические возможности почвенных актинобактерий (обзор) // Теоретическая и прикладная экология. 2023. № 2. С. 6–19.
  16. Григорян Л.Н., Батаева Ю.В., Яковлева Л.В., Шляхов В.А. Микробиологический состав засоленных почв аридных территорий // Современная наука: актуальные проблемы теории и практики. Сер. Естественные и технические науки. 2018. № 12. С. 6–13.
  17. Дембицкий В.М. Углеводородные и жирнокислотные компоненты в культурах нитевидных цианобактерий Scytonema sp., выделенных из микробиального сообщества “Black Cover” известняковых стен в Иерусалиме // Биохимия. 2002. № 11. С. 1545–1552.
  18. Дембицкий В.М., Дор И., Шкроб И., Аки М. Разветвленные алканы и другие неполярные соединения, продуцируемые цианобактерией Microcoleus vaginatus из пустыни Негев // Биоорг. химия. 2001. Т. 27. № 2. С. 130–140.
  19. Дембицкий В.М., Шкроб И., Гоу И.В. Дикарбоновые и жирные кислоты цианобактерий рода Aphanizomenon // Биохимия. 2001. Т. 66. № 1. С. 92–97.
  20. Дидович С.В., Москаленко С.В., Темралеева А.Д., Хапчаева С.А. Биотехнологический потенциал почвенных цианобактерий (обзор) // Вопросы современной альгологии. 2017. № 2. http://algology.ru/1170
  21. Домрачева Л.И., Ковина А.Л., Кондакова Л.В., Ашихмина Т.Я. Цианобактериальные симбиозы и возможность их практического использования (обзор) // Теор. и прикл. экол. 2021. № 3. С. 21–30.
  22. Еленкин А.А. Синезеленые водоросли СССР. Общая часть. М.–Л.: Изд-во АН СССР, 1936. 679 с.
  23. Каширская Н.Н., Хомутова Т.Э., Чернышева Е.В., Ельцов М.В., Демкин В.А. Численность и суммарная биомасса микробных сообществ каштановых почв и солонцов сухостепной зоны Нижнего Поволжья // Почвоведение. 2015. № 3. С. 337–346. https://doi.org/10.7868/S0032180X15010098.
  24. Кирпенко Н.И., Курашов Е.А., Крылова Ю.В. Компонентный состав экзометаболитов в культурах некоторых водорослей // Гидробиол. журн. 2012. Т. 48. № 1. С. 65–77.
  25. Кирпенко Н.И., Курашов Е.А., Крылова Ю.В. Экзогенные метаболитные комплексы двух синезеленых водорослей в моно- и смешанных культурах // Пресноводная гидробиология. 2010. № 2 (43). С. 241–244.
  26. Ковда В.А. Почвенный покров. Его улучшение, использование и охрана. М.: Наука, 1981. 183 с.
  27. Кокшарова О.А. Цианобактерии: перспективные объекты научного исследования и биотехнологии // Успехи современной биологии. 2008. Т. 128. № 1. С. 3–20.
  28. Костяев В.Я. Биология, экология и роль азотфиксирующих синезеленых водорослей (цианобактерий) в различных экосистемах. Автореф. дис. … докт. биол. наук. М., 1993. 40 с.
  29. Кузьменко М.И. Миксотрофизм синезеленых водорослей и его экологическое значение. Киев: Наука, 1981. 212 с.
  30. Кутовая О.В., Василенко Е.С., Лебедева М.П. Микробиологическая и микроморфологическая характеристика крайнеаридных пустынных почв илийской впадины (Казахстан) // Почвоведение. 2012. № 12. С. 1297–1309.
  31. Ермилова Е.В. Молекулярные аспекты адаптации прокариот. СПб.: Химиздат, 2012. 341с.
  32. Новичкова-Иванова Л.Н. Почвенные водоросли фитоценозов Сахаро-Гобийской пустынной области. Л.: Наука, 1980. 256 с.
  33. Панкратова Е.М. Становление функциональных особенностей цианобактерий на путях их сопряженной эволюции с биосферой // Теор. и прикл. экол. 2010. № 3. С. 4–11.
  34. Патова Е.Н., Сивков М.Д., Новаковская И.В., Егорова И.Н., Давыдов Д.А., Романов Р.Е., Харпухаева Т.М. Генетическое разнообразие, морфология и экология Nostoc commune Vauch. ex Born. et Flah. (Cyanoprokaryota) от тундровых до степных экосистем // Проблемы ботаники Южной Сибири и Монголии. 2018. № 17. С. 229–233.
  35. Пивоварова Ж.Ф., Факторович Л.В., Благодатнова А.Г. Особенности таксономической структуры почвенных фотоавтотрофов при освоении первичных субстратов // Растительный мир Азиатской России. 2012. № 1. С. 16–21.
  36. Пиневич А.В., Аверина С.Г. На краю радуги: длинноволновые хлорофиллы и фотосинтетическая адаптация цианобактерий к дальнему красному свету // Микробиология. 2022. Т. 91. № 6. С. 666–684. https://doi.org/10.31857/S0026365622600444
  37. Поля Ю.М., Сухаревич В.И., Поляк М.С. Цианобактерии и их метаболиты. СПб.: Нестор-История, 2022. 328 с.
  38. Сиренко Л.А., Козицкая В.Н. Биологически активные вещества водорослей и качество воды. Киев: Наукова думка, 1988. 256 с.
  39. Хайбуллина Л.С., Гайсина Л.А. Влияние засоления на состав и морфологические особенности почвенных водорослей // Почвоведение. 2008. № 2. С. 241–247.
  40. Цавкелова Е.А. Структурно-функциональные особенности микробных сообществ эпифитных орхидей: биоразнообразие, роль и биотехнологическая значимость ассоциативных микроорганизмов. Автореф. дис. … докт. биол. наук. М., 2021. 46 с.
  41. Шабанов Р.М., Бембеев Ч.С. Деградация земель в республике Калмыкия в контексте глобальной экологической проблемы опустынивания территорий // Итоги и перспективы развития агропромышленного комплекса. Сб. матер. Междунар. науч.-пр. конф. 2018. С. 476–481.
  42. Штина Э.А., Зенова Г.М., Манучарова Н.А. Альгологический мониторинг почв // Почвоведение. 1998. № 12. С. 1449–1461.
  43. Шушуева М.Г. Почвенные водоросли в биогеоценозах степной зоны Северного Казахстана // Ботан. журн. 1985. Т. 79. № 1. С. 23–32.
  44. Acea M.J., Prieto-Ferna Ândez A., Diz-Cid N. Cyanobacterial inoculation of heated soils: Effect on microorganisms of C and N cycles and on chemical composition in soil surface // Soil Biol. Biochem. 2003. V. 35. Р. 513–524. https://doi.org/10.1016/S0038-0717(03)00005-1
  45. Asthana R.K., Tripathi M.K., Deepali A., Srivastava A., Singh A.P., Singh S.P., Nath G., Srivastava R., Srivastava B.S. Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537 // J. Appl. Phycol. 2009. V. 21. Р. 81–88.
  46. Becher P.G., Baumann H.I., Gademann K., Juttner F. The cyanobacterial alkaloid nostocarboline: An acetylcholinesterase and trypsin inhibitor // J. Appl. Phycology. 2009. V. 21. P. 103–110.
  47. Belnap J., Eldridge D. Disturbance and recovery of biological soil crusts. // Biological soil crusts: structure, function, and management. Berlin: Heidelberg: Springer, 2003. P. 363–383.
  48. Benard P., Zarebanadkouki M., Brax M., Kaltenbach R., Jerjen I., Marone F., Couradeau E., Felde V., Kaestner A., Carminati A. Microhydrological niches in soils: how mucilage and EPS alter the biophysical properties of the rhizosphere and other biological hotspots // Vadose Zone J. 2019. V. 18. Р. 1–10.
  49. Berry J.P., Gantar M., Perez M.H., Berry G., Noriega F.G. Cyanobacterial toxins as allelochemicals with potential applications as algaecides, herbicides and insecticides // Mar. Drugs. 2008. V. 6. Р. 117–146.
  50. Billi D., Verseux C., Fagliarone C., Napoli A., Baqué M., de Vera J.-P. A Desert cyanobacterium under simulated mars-like conditions in low earth orbit: implications for the habitability of Mars // Astrobiology. 2019. V. 19. Р. 158–169.
  51. Billi D., Wright D.J., Helm R.F., Prickett T., Potts M., Crowe J.H. Engineering desiccation tolerance in Escherichia coli // Appl. Environ. Microbiol. 2000. V. 66. P. 1680–1684.
  52. Blom J.F., Brutsch T., Barbaras D., Bethuel Y., Locher H.H., Hubschwerlen C., Gademann K. Potent algicides based on the cyanobacterial alkaloid nostocarboline // Org. Lett. 2006. V. 8. Р. 737–740.
  53. Blunt J.W., Copp B.R., Hu W.P., Munro M.H., Northcote P.T., Prinsep M.R. Marine natural products // Nat. Prod. Rep. 2009. V. 26. Р. 170–244.
  54. Büdel B., Williams W.J., Reichenberger H. Annual net primary productivity of a cyanobacteria-dominated biological soil crust in the Gulf Savannah, Queensland // Aust. Biogeosci. 2018. V. 15. Р. 491–505. https://doi.org/10.5194/bg-15-491-2018
  55. Burja A.M., Banaigs B., Abou-Mansour E., Burgess J.G., Wright P.C. Marine cyanobacteria – a prolific source of natural products // Tetrahedron. 2001. V. 57. Р. 9347–9377.
  56. Cardozo K.H., Guaratini T., Barros M.P., Falcão V.R., Tonon A.P., Lopes N.P. Metabolites from algae with economical impact // Comp. Biochem. Phys. 2007. V. 146. Р. 60–78.
  57. Chamizo S., Mugnai G., Rossi F., Certini G., De Philippis R. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration // Front. Environ. Sci. 2018. V. 6. https://doi.org/10.3389/fenvs.2018.00049
  58. Chamizo S., Adessi A., Torzillo G., De Philippis R. Exopolysaccharide features influence growth success in biocrust-forming cyanobacteria, moving from liquid culture to sand microcosms // Front. Microbiol. 2020. V. 11. Р. 568224.
  59. Chan Y., Lacap D.C., Lau M.C.Y., Ha K.Y., Warren-Rhodes K.A., Cockell C.S. et al. Hypolithic microbial communities: between a rock and a hard place // Environ. Microbiol. 2012. V. 14. Р. 2272–2282. https://doi.org/10.1111/j.1462-2920.2012
  60. Chen M.-Y., Teng W.-K., Zhao L., Hu C.-X., Zhou Y.K., Han B.-P., Song L.-R., Shu W.-S. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation // ISME J. 2021. V. 15. Р. 211–227.
  61. Chen Q., Yan N., Xiong K., Zhao J. Cyanobacterial diversity of biological soil crusts and soil properties in karst desertification area // Front. Microbiol. 2023. V. 14. Р.1113707. https://doi.org/10.3389/fmicb.2023.1113707
  62. Cohen Z. Chemicals from microalgae. London: Taylor & Francis, 1999. 450 p.
  63. Concostrina-Zubiri L., Huber-Sannwald E., MartõÂnez I., Flores J.L.F., Reyes-AguÈero J.A., Escudero A. et al. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics // Ecol. Appl. 2014. V. 24(7). Р. 1863–1877. https://doi.org/10.1890/13-1416.1
  64. Costa O.Y.A., Raaijmakers J.M., Kuramae E.E. Microbial extracellular polymeric substances: ecological function and impact on soil aggregation // Front. Microbiol. 2018. V. 9. Р. 1636.
  65. Couradeau E., Giraldo-Silva A., De Martini F., Garcia-Pichel F. Spatial segregation of the biological soil crust microbiome around its foundational cyanobacterium, Microcoleus vaginatus, and the formation of a nitrogen-fixing cyanosphere // Microbiome. 2019. V. 7. Р. 55.
  66. Cox P.A., Banack S.A., Murch S.J., Rasmussen U., Tien G., Bidigare R.R., Metcalf J.S., Morrison L.F., Codd G.A., Bergman B. Diverse taxa of cyanobacteria produce beta-N-methylamino-L-alanine, a neurotoxic amino acid // Proc. Natl. Acad. Sci. 2005. V. 102. P. 5074.
  67. Crits-Christoph A., Robinson C.K., Ma B., Ravel J., Wierzchos J., Ascaso C., Artieda O., Souza-Egipsy V., Casero M.C., DiRuggiero J. Phylogenetic and functional substrate specificity for endolithic microbial communities in hyper-arid // Environments. Front. Microbiol. 2016. V. 7. Р. 301. https://doi.org/10.3389/fmicb.2016.00301
  68. Dabravolski S.A., Isayenkov S.V. Metabolites facilitating adaptation of desert cyanobacteria to extremely arid environments // Plants. 2022. V. 11. Р. 3225. https://doi.org/10.3390/plants11233225.
  69. Dixit R.B., Suseela M.R. Cyanobacteria: Potential candidates for drug discovery // Anton Leeuw. 2013. № 103. Р. 947–961.
  70. Ertekin E., Meslier V., Browning A., Treadgold J., Diruggiero J. Rock structure drives the taxonomic and functional diversity of endolithic microbial communities in extreme environments // Environmental Microbiology. 2020. V. 23. https://doi.org/10.1111/1462-2920.15287
  71. Etemadi-Khah A., Pourbabaee A.A., Alikhani H.A., Noroozi M., Bruno L. Biodiversity of isolated cyanobacteria from desert soils in Iran // Geomicrobiol J. 2017. V. 34. Р. 784–794. https://doi.org/10.1080/01490451.2016.1271064
  72. Faist A.M., Herrick J.E., Belnap J., Van Zee J.W., Barger N.N. Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem // Ecosphere. 2017. V. 8. P. e01691.
  73. Fernandes V.M., Machado de Lima N.M., Roush D., Rudgers J., Collins S.L., Garcia-Pichel F. Exposure to predicted precipitation patterns decreases population size and alters community structure of cyanobacteria in biological soil crusts from the Chihuahuan Desert // Environ. Microbiol. 2018. V. 20. Р. 259–269. https://doi.org/10.1111/1462-2920.13983
  74. Ferrari P.F., Palmieri D., Casazza A.A., Aliakbarian B., Perego P., Palombo D. TNF a-induced endothelial activation is counteracted by polyphenol extract from UV-stressed cyanobacterium Arthrospira platensis // Med. Chem. Res. 2015. V. 24. Р. 275–282.
  75. Finstad K.M., Probst A.J., Thomas B.C., Andersen G.L., Demergasso C., Echeverría A., Amundson R.G., Banfield J.F. Microbial community structure and the persistence of cyanobacterial populations in salt crusts of the hyperarid Atacama desert from genome-resolved metagenomics // Front. Microbiol. 2017. V. 8. Р. 1435. https://doi.org/10.3389/fmicb.2017.01435
  76. Gao X. Scytonemin plays a potential role in stabilizing the exopolysaccharidic matrix in terrestrial cyanobacteria // Microb. Ecol. 2017. V. 73. Р. 255–258.
  77. Gayathri M., Kumar P.S., Prabha A.M.L., Muralitharan G. In vitro regeneration of Arachis hypogaea L. and Moringa oleifera Lam. using extracellular phytohormones from Aphanothece sp. MBDU 515 // Algal Res. 2015. V. 7. Р. 100–105.
  78. Gaysina L.A., Bohunicka M., Hazukova V., Johansen J.R. Biodiversity of terrestrial cyanobacteria of the South Ural region // Cryptogam. Algol. 2018. V. 39. Р. 167–198. https://doi.org/10.7872/crya/v39.iss2.2018.167
  79. Gerwick W.H., Coates R.C., Engene N., Gerwick L., Grindberg R.V., Jones A.C., Sorrels C.M. Giant marine cyanobacteria produce exciting potential pharmaceuticals // Microbe. 2008. V. 3. Р. 277–284.
  80. Gul N., Poolman B. Functional reconstitution and osmoregulatory properties of the ProU ABC transporter from Escherichia coli // Mol. Membr. Biol. 2013. V. 30. Р. 138–48.
  81. Gupta A., Agarwal P. Extraction, isolation, and bioassay of a gibberellin-like substance from Phormidium foveolarum // Ann. Bot. 1973. V. 37. Р. 737–741.
  82. Gutie´rrez R.M.P., Flores A.M., Solis R.V., Jimenez J.C. Two new antibacterial norbietane diterpenoids from cyanobacterium Micrococcus lacustris // J. Nat. Med. 2008. V. 62. Р. 328–331.
  83. Hagemann M., Henneberg M., Felde V., Drahorad S.L., Berkowicz S.M., Felix-Henningsen P. et al. Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert // Israel. Microb. Ecol. 2015. V. 70. Р. 219–230. https://doi.org/10.1007/s00248-014-0533-z
  84. Hirata K., Yoshitomi S., Dwi S., Iwabe O., Mahakhant A., Polchai J., Miyamoto K. Bioactivities of nostocine A produced by a freshwater cyanobacterium Nostoc spongiaeforme TISTR 8169 // J. Biosci. Bioeng. 2003. V. 95. Р. 512–517.
  85. Hirsch A.M. Hormonal regulation in plant-microbe symbioses (symposium remarks) // Biology of Plant-Microbe Interactions. 2004. V. 4. P. 389–390.
  86. Huang I.S., Zimba P.V. Cyanobacterial bioactive metabolites – A review of their chemistry and biology // Harmful Algae. 2019. V. 83. Р. 42–94. https://doi.org/10.1016/j.hal.2018.11.008
  87. Hussain A., Hasnain S. Phytostimulation and biofertilization in wheat by cyanobacteria // J. Ind. Microbiol. Biotechnol. 2010. V. 38. Р. 85–92.
  88. Inoue-Sakamoto K., Nazifi E., Tsuji C., Asano T., Nishiuchi T., Matsugo S., Ishihara K., Kanesaki Y., Yoshikawa H., Sakamoto T. Characterization of mycosporine-like amino acids in the cyanobacterium Nostoc verrucosum // J. Gen. Appl. Microbiol. 2018. V. 64. Р. 203–211.
  89. Isayenkov S.V., Maathuis F.J.M. Plant salinity stress: many unanswered questions remain // Front. Plant Sci. 2019. V. 10. Р. 80.
  90. Isichei A.O. The role of algae and cyanobacteria in arid Iads // Arid Soil Res. аnd Rehabil. 1990. V. 4(1). P. 1–17.
  91. Jaki B., Orjala J., Heilmann J., Linden A., Vogler B., Sticher O. Novel extracellular diterpenoids with biological activity from the cyanobacterium Nostoc commune // J. Nat. Prod. 2000. V. 63. Р. 339–343.
  92. Jepson M.A., Clark M.A., Hirst B.H. Сell targeting by lectins: a strategy for mucosal vaccination and drug delivery // Adv. Drug Deliv. Rev. 2004. V. 56. Р. 511–525.
  93. Jia R.L., Li X.R., Liu L.C., Gao Y.H., Zhang X.T. Differential wind tolerance of soil crust mosses explains their micro-distribution in nature // Soil Biology and Biochemistry. 2012. V. 45. Р. 31–39. https://doi.org/10.1016/j.soilbio.2011.09.021
  94. Kajiyma S., Kanzaki H., Kawazu K., Kobayashi A. Nostofungicide, an atifungal lipopeptide from the fieldgrown terrestrial bluegreen alga Nostoc commune // Tetrahedron Lett. 1998. V. 39(22). P. 3737–3740.
  95. Kaushik P., Chauhan A. In vitro antibacterial activity of laboratory grown culture of Spirulina platensis // Indian J. Microbiol. 2008. V. 48. Р. 348–352.
  96. Kedem I., Treves H., Noble G., Hagemann M., Murik O., Raanan H., Oren N., Giordano M., Kaplan A. Keep your friends close and your competitors closer: novel interspecies interaction in desert biological sand crusts // Phycologia. 2021. V. 60. V. 419–426.
  97. Kultschar B., Llewellyn C. Secondary metabolites in cyanobacteria. InTech: Sources and Applications, 2018. 148 р. https://doi.org/10.5772/intechopen.75648
  98. Kumar A., Singh S., Gaurav A.K., Srivastava S., Verma J.P. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants // Front. Microbiol. 2020. V. 11. Р. 1216.
  99. Kumar J., Parihar P., Singh R., Singh V.P., Prasad S.M. UVB induces biomass production and nonenzymatic antioxidant compounds in three cyanobacteria // J. Appl. Phycol. 2016. V. 28. Р. 131–140.
  100. Lacap-Bugler D.C., Lee K.K., Archer S., Gillman L.N., Lau M.C.Y., Leuzinger S., Lee C.K., Maki T., McKay C.P., Perrott J.K., de los Rios-Murillo A., Warren-Rhodes K.A., Hopkins D.W., Pointing S.B. Global diversity of desert hypolithic cyanobacteria // Front. Microbiol. 2017. V. 8. Р. 867. https://doi.org/10.3389/fmicb.2017.00867
  101. Lan S., Zhang Q., Wu L., Liu Y., Zhang D., Hu C. Artificially accelerating the reversal of desertification: Cyanobacterial inoculation facilitates the succession of vegetation communities // Environ. Sci. Technol. 2014. V. 48(1). Р. 307–315. https://doi.org/10.1021/es403785j PMID: 24303976
  102. Lee S.S., Gantzer C.J., Thompson A.L., Anderson S.H. Polyacrylamide efficacy for reducing soil erosion and runoff as influenced by slope // J. Soil Water Conserv. 2011. V. 66(3). Р. 172–177. https://doi.org/10.2489/jswc.66.3.172
  103. Li Y., Shao M., Horton R. Effect of polyacrylamide applications on soil hydraulic characteristics and sediment yield of sloping land // Procedia Environmental Sciences. 2011. V. 11. Р. 763–773. https://doi.org/10.1016/j.proenv.2011.12.118
  104. Li Z., Xiao J., Chen C., Zhao L., Wu Z., Liu L., Cai D. Promoting desert biocrust formation using aquatic cyanobacteria with the aid of MOF-based nanocomposite // Sci. Total Environ. 2020. V. 15(708). Р. 134824. https://doi.org/10.1016/j.scitotenv.2019.134824
  105. Liu J., Shi B., Lu Y., Jiang H., Huang H., Wang G., et al. Effectiveness of a new organic polymer sand-fixing agent on sand fixation // Environ. Earth Sci. 2012. V. 65. Р. 589–595. https://doi.org/10.1007/s12665-011-1106-9
  106. Ma L.X., Led J.J. Determination by high field NMR spectroscopy of the longitudinal electron relaxation rate in Cu (II) plastocyanin form Anabaena variabilis // Am. Chem. Soc. 2000. V. 122. Р. 7823–7824.
  107. Machado de Lima N.M., Fernandes V.M.C., Roush D., Velasco Ayuso S., Rigonato J., Garcia-Pichel F. et al. The compositionally distinct cyanobacterial biocrusts from Brazilian savanna and their environmental drivers of community diversity // Front. Microbiol. 2019. V. 10. Р. 2798. https://doi.org/10.3389/fmicb.2019.02798
  108. Maestre F.T., MartõÂn N., DõÂez B., LoÂpez-Poma R., Santos F., Luque I. et al. Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils // Microb. Ecol. 2006. V. 52(3). Р. 365–377. PMID: 16710791 https://doi.org/10.1007/s00248-006-9017-0
  109. Marinho-Soriano E., Bourret E. Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae Rhodophyta) // Bioresour. Technol. 2003. V. 90. Р. 329–333.
  110. Marsšálek B., Zahradníˇcková H., Hronková M. Extracellular abscisic acid produced by cyanobacteria under salt stress // J. Plant Physiol. 1992. V. 139. Р. 506–508.
  111. McHugh T.A., Compson Z., van Gestel N., Hayer M., Ballard L., Haverty M., Hines J., Irvine N., Krassner D., Lyons T. et al. Climate controls prokaryotic community composition in desert soils of the Southwestern United States // FEMS Microbiol. Ecol. 2017. V. 93. Р. 116.
  112. Mehda S., Muñoz-Martín M.Á., Oustani M., Hamdi-Aïssa B., Perona E., Mateo P. Microenvironmental conditions drive the differential cyanobacterial community composition of biocrusts from the Sahara desert // Microorganisms. 2021. V. 9. Р. 487.
  113. Miao S., Anderson R.J., Allen T.M. Cytotoxic metabolites from the sponge Ianthella basta collected in Papua New Guinea // J. Nat. Prod. 1990. V. 53. Р. 1441–1446.
  114. Miralles I., Domingo F., Cantón Y., Trasar-Cepeda C., Leirós M.C., Gil-Sotres F. Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones // Soil Biol. Biochem. 2012. V. 53. Р. 124–132.
  115. Moghtaderi A., Taghavi M., Rezaei R. Cyanobacteria in biological soil crust of chadormalu area, Bafq region in central Iran // Pakistan J. of Nutrition. 2009. V. 8 (7). Р. 1083-1092.
  116. Murik O., Oren N., Shotland Y., Raanan H., Treves H., Kedem I. et al. What distinguishes Cyanobacteria able to revive after desiccation from those that cannot: the genome aspect // Environ. Microbiol. 2017. V. 19. Р. 535–550.
  117. Murray B., Dailey M., Ertekin E., DiRuggiero J. Draft metagenomes of endolithic cyanobacteria and cohabitants from hyper-arid deserts // Microbiol. Resour. Announc. 2021. V. 10(30). P. e0020621. https://doi.org/10.1128/MRA.00206-21
  118. Nagatsu A., Kajitani H., Sakakibara J. Muscoride A: a new oxazole peptide alkaloid from freshwater cyanobacterium Nostoc muscorum // Tetrahedron Lett. 1995. V. 36. Р. 4097–4100.
  119. Nelson C., Giraldo-Silva A., Garcia-Pichel F. A Symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium, Microcoleus Vaginatus // ISME J. 2021. V. 15. Р. 282–292.
  120. Nemani R.R., Keeling C.D., Hashimoto H., Jolly W.M., Piper S.C., Tucker C.J., Myneni R.B., Running S.W. Climate-driven increases in global terrestrial net primary production from 1982 to 1999 // Science. 2003. V. 300. Р. 1560–1563.
  121. Nisha R., Kaushik A., Kaushik C.P. Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil // Geoderma. 2007. V. 138(12). Р. 49–56. https://doi.org/10.1016/j.geoderma.2006.10.007
  122. Novakovskaya I.V., Patova E.N., Dubrovskiy Y.A., Novakovskiy A.B., Kulyugina E.E. Distribution of algae and cyanobacteria of biological soil crusts along the elevation gradient in mountain plant communities at the northern Urals (Russian European northeast) // J. Mt. Sci. 2022. V. 19. Р. 637–646. https://doi.org/10.1007/s11629-021-6952-7
  123. Oren A., Gunde-Cimerman N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? // FEMS Microbiol. Lett. 2007. V. 269. Р. 1–10.
  124. Oren N., Raanan H., Kedem I., Turjeman A., Bronstein M., Kaplan A., Murik O. Desert cyanobacteria prepare in advance for dehydration and rewetting: the role of light and temperature sensing // Mol. Ecol. 2019. V. 28. Р. 2305–2320.
  125. Park C.-H., Li X., Jia R.L., Hur J-S. Effects of superabsorbent polymer on cyanobacterial biological soil crust formation in laboratory // Arid Land Res Manage. 2014. V. 29. Р. 55-71. https://doi.org/10.1080/15324982.2014.928835
  126. Park C.-H., Li X.R., Zhao Y., Jia R.L., Hur J-S. Rapid development of cyanobacterial crust in the field for combating desertification // PLoS ONE. 2017. V. 12(6). e0179903. https://doi.org/10.1371/journal.pone.0179903
  127. Patova E., Sivkov M., Patova A. Nitrogen fixation activity in biological soil crusts dominated by cyanobacteria in the Subpolar Urals (European North-East Russia) // FEMS Microbiology Ecology. 2016. V. 92(9). P. fiw131. https://doi.org/10.1093/femsec/fiw131
  128. Pointing S., Belnap J. Microbial colonization and controls in dryland systems. Nature reviews // Microbiology. 2012. V. 10. Р. 551–562. https://doi.org/10.1038/nrmicro2831
  129. Pointing S.B., Fierer N., Smith G.J.D., Steinberg P.D., Wiedmann M. Quantifying human impact on Earth’s microbiome // Nat. Microbiol. 2016. V. 1. Р. 16145. https://doi.org/10.1038/nmicrobiol.2016.145
  130. Pointing S.B., Buedel B., Convey P., Gillman L.L., Koerner C., Leuzinger S.S. et al. Biogeography of photoautotrophs in the high polar biome // Front. Plant Sci. Funct. Plant Ecol. 2015. V. 6. Р. 692. https://doi.org/10.3389/fpls.2015.00692
  131. Popova A.A., Rasmussen U., Semashko T.A., Govorun V.M., Koksharova O.A. Stress effects of cyanotoxin β-methylamino-L-alanine (BMAA) on cyanobacterial heterocyst formation and functionality // Env. Microbiol. Reports. 2018. V. 10. P. 369–377. https://doi.org/10.1111/1758-2229.12647
  132. Prasanna R.A., Sood A., Jaiswal S., Nayak S., Gupta V., Chaudhary V. Rediscovering cyanobacteria as valuable sources of bioactive compounds (review) // Appl. Biochem. Microb. 2010. V. 46. Р. 119–134.
  133. Prinsep M.R., Caplan F.R., Moore R.E., Patterson G.M.L., Smith C.D. Tolyphorin, a novel multidrug resistance reversing agent from the blue green algae Tolypothrix nodosa // J. Am. Chem. Soc. 1992. V. 114. Р. 385–387.
  134. Pushkareva E., Johansen J.R., Elster J. A review of the ecology, ecophysiology and biodiversity of microalgae in Arctic soil crusts // Polar Biol. 2016. V. 39. Р. 2227–2240. https://doi.org/10.1007/s00300-016-1902-5
  135. Pushkareva E., Pessi I.S., Namsaraev Z., Mano M.J., Elster J., Wilmotte A. Cyanobacteria inhabiting biological soil crusts of a polar desert: Sør Rondane Mountains // Antarct. Syst. Appl. Microbiol. 2018. V. 41. Р. 363–373. https://doi.org/10.1016/j.syapm.2018.01.006
  136. Ramirez M., Hernandez-Marine M., Mateo P., Berrendero E., Roldan M. Polyphasic approach and adaptative strategies of Nostoc cf. commune (Nostocales, Nostocaceae) growing on Mayan monuments // Fottea. 2011. V. 1. P. 73–86.
  137. Rastogi R.P., Sinha R.P. Biotechnological and industrial significance of cyanobacterial secondary metabolites // Biotechnol. Adv. 2009. V. 27. Р. 521–539.
  138. Raveh A., Carmeli S. Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel // J. Nat. Prod. 2007. V. 70. Р. 196–201.
  139. Rezanka T., Dembitsky V.M. Metabolites produced by cyanobacteria belonging to several species of the family Nostocaceae // Folia Microbiol. 2006. V. 51. P. 159–182.
  140. Rezanka T., Dembitsky V.M., Go J.V., Dor I., Prell A., Hanuš L. Sterol compositions of the filamentous nitrogen-fixing terrestrial cyanobacterium Scytonema sp. // Folia Microbiol. 2003. V. 48(3). Р. 357–360.
  141. Rice-Evans C.A., Miller N.J., Paganga G. Antioxidant properties of phenolic compounds // Trends Plant Sci. 1997. V. 2. Р. 152–159.
  142. Roncero-Ramos B., Muñoz-Martín M.Á., Chamizo S., Fernández-Valbuena L., Mendoza D., Perona E. et al. Polyphasic evaluation of key cyanobacteria in biocrusts from the most arid region in Europe // Peer J. 2019. V. 7. Р. 6169. https://doi.org/10.7717/peerj.6169
  143. Samolov E., Baumann K., Büdel B., Jung P., Leinweber P., Mikhailyuk T., Karsten U., Glaser K. Biodiversity of algae and cyanobacteria in biological soil crusts collected along a climatic gradient in Chile using an integrative approach // Microorganisms. 2020. V. 8(7). Р. 1047. https://doi.org/10.3390/microorganisms8071047
  144. Schwabe G.H. Blaualgenprobleme // Schweiz fur Hydrologie, Hydrographie, Hydrobiologie, Bazel. 1962. V. 2. P. 207-222.
  145. Sergeeva E., Liaimer A., Bergman B. Evidence for production of the phytohormone indole-3-acetic acid by cyanobacteria // Planta. 2002. V. 215. P. 229.
  146. Shigeichi K., Masashi A., Makoto H. Transformation of thylakoid membranes during differentiation from vegetative cell into heterocyst visualized by microscopic spectral imaging // Plant Physiol. 2013. V. 161. V. 3. P. 1321–1333.
  147. Silva-Stenico M.E., Silva C.S., Lorenzi A.S., Shishido T.K., Etchegaray A., Lira S.P. Non-ribosomal peptides produced by Brazilian cyanobacterial isolates with antimicrobial activity // Microbiol. Res. 2011. V. 166. Р. 161–175.
  148. Singh P.K., Pal S. Cyanobacteria in the polar regions: diversity, adaptation, and taxonomic problems. 2021. https://doi.org/10.1016/B978-0-12-822869-2.00013-X
  149. Singh R., Parihar P., Singh M., Bajguz A., Kumar J., Singh S., Singh V.P., Prasad S.M. Uncovering potential applications of cyanobacteria and algal metabolites in biology, agriculture and medicine: current status and future prospects // Front. Microbiol. 2017. V. 8. Р. 515.
  150. Singh S.P., Hader D.P., Sinha R.P. Cyanobacteria and ultraviolet radiation (UVR) stress: mitigation strategies // Age Res. Rev. 2010. V. 9. Р. 79–90.
  151. Skoupý S., Stanojković A., Pavlíková M., Poulíčková A., Dvorak P. New cyanobacterial genus Argonema is hiding in soil crusts around the world // Scientific Reports. 2022. Р. 7203. https://doi.org/10.1038/s41598-022-11288-4
  152. Sosa-Quintero J., Godínez-Alvarez H., Camargo-Ricalde S.L., Gutiérrez-Gutiérrez M., Huber-Sannwald E., Jiménez-Aguilar A. et al. Biocrusts in Mexican deserts and semideserts: a review of their species composition, ecology, and ecosystem function // J. Arid Environ. 2022. V. 199. Р. 104712. https://doi.org/10.1016/j.jaridenv.2022.104712
  153. Steele J.H., Brink K.H., Scott B.E. Comparison of marine and terrestrial ecosystems: suggestions of an evolutionary perspective influenced by environmental variation // ICES J. Mar. Sci. 2019. V. 76. Р. 50–59.
  154. Stewart J.B., Bomemann V., Chen J.L., Moore R.E., Caplan F.R., Karuso H., Larsen L.K., Patterson G.M. Cytotoxic, fungicidal nucleosides from blue-green algae belonging to the Scytonemataceae // J. Antibiot. 1988. V. 41. Р. 1048–1056.
  155. Stirk W.A., Bálint P., Tarkowská D., Novákc O., Strnad M., Ördög V. Hormone profiles in microalgae: gibberellins and brassinosteroids // Plant Physiol. Biochem. 2013. V. 70. Р. 348–353.
  156. Stirk W.A., Ordog V., Staden J.V., Jager K. Cytokinins and auxin-like activity in Cyanophyta and microalgae // J. Appl. Phycol. 2002. V. 14. Р. 215–221.
  157. Temraleeva A.D. Cyanobacterial diversity in the soils of Russian dry steppesand semideserts // Microbiology. 2018. V. 87. Р. 249–260. https://doi.org/10.1134/s0026261718020169
  158. Valverde A., Makhalanyane T.P., Seely M., Cowan D.A. Cyanobacteria drive community composition and functionality in rocksoil interface communities // Mol. Ecol. 2015. V. 24. Р. 812–821. https://doi.org/10.1111/mec.13068
  159. Verma S., Thapa S., Siddiqui N., Chakdar H. Cyanobacterial secondary metabolites towards improved commercial significance through multiomics approaches // World J. Microbiol. Biotechnol. 2022. V. 38. https://doi.org/10.1007/s11274-022-03285-6
  160. Volk R.B., Furkert F.H. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth // Microbiol. Res. 2006. V. 161(2). Р. 180–186.
  161. Wang J., Salem D.R., Sani R.K. Extremophilic exopolysaccharides: a review and new perspectives on engineering strategies and applications // Carbohydr. Polym. 2019. V. 205. Р. 8–26.
  162. Wang L., Kaseke K.F., Seely M.K. Effects of non-rainfall water inputs on ecosystem functions // WIREs Water. 2017. V. 4. P. e1179.
  163. Warren S.D. Biological soil crusts and hydrology in North American deserts // Biological soil crusts: Structure, function, and management. Berlin Heidelberg: Springer, 2003. Р. 327–337.
  164. Weber B., Wu D., Tamm A., Ruckteschler N., Rodríguez-Caballero E., Steinkamp J., Meusel H., Elbert W., Behrendt T., Sörgel M. et al. Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in Drylands // Proc. Natl. Acad. Sci. USA. 2015. V. 112. Р. 15384–15389.
  165. W i S., Lacap-Bugler D., Lau M., Caruso T., Rao S., De los Ríos A., Archer S., Chiu J., Higgins C., Van Nostrand J., Zhou J., Hopkins D., Pointing S. Taxonomic and functional diversity of soil and hypolithic microbial communities in Miers Valley, McMurdo dry Valleys, Antarctica // Frontiers in Microbiology. 2016. V. 7. Р. 1642. https://doi.org/10.3389/fmicb.2016.01642
  166. West N.E. Structure and function of soil microphysics crusts in wild land ecosystems of arid and semiarid regions // Adv. Ecol. Res. 1990. V. 20. Р. 179–223.
  167. Wierzchos J., Ríos A.D.L., Ascaso C. Microorganisms in desert rocks: the edge of life on Earth // Int. Microbiol. 2012. V. 15. Р. 173–183. https://doi.org/10.2436/20.1501.01.170
  168. Williams L., Loewen-Schneider K., Maier S., Büdel B. Cyanobacterial diversity of western European biological soil crusts along a latitudinal gradient // FEMS Microbiol. Ecol. 2016. V. 92 Р. 157. https://doi.org/10.1093/femsec/fiw157
  169. World Reference Base for soil resources 2014: international soil classification system for naming soils and creating legends for soil maps. FAO UNESCO, 2014.
  170. Wu Y., Rao B., Wu P., Liu Y., Li G., Li D. Development of artificially induced biological soil crusts in fields and their effects on top soil // Plant Soil. 2013. V. 370. Р. 115–124. https://doi.org/10.1007/s11104-013-1611-6
  171. Yadav R.K., Tripathi K., Varghese E., Abraham G. Physiological and proteomic studies of the cyanobacterium anabaena sp. acclimated to desiccation stress // Curr. Microbiol. 2021. V. 78. Р. 2429–2439.
  172. Yonter G. Effects of polyvinylalcohol (PVA) and polyacrylamide (PAM) as soil conditioners on erosion by runoff and by splash under laboratory conditions // Ekoloji. 2010. V. 19. Р. 35–41.
  173. Zahradnıckova H., Budijovice C., Polinska M. High-performance thin-layer chromatographic and high-performance liquid chromatographic determination of abscisic acid produced by cyanobacteria // J. Chromatogr. A. 1991. V. 555. Р. 239–245.
  174. Zhang B., Li R., Xiao P., Su Y., Zhang Y. Cyanobacterial composition and spatial distribution based on pyrosequencing data in the Gurbantunggut desert, northwestern China // J. Basic Microbiol. 2015. V. 56, Р. 308–320. https://doi.org/10.1002/jobm.201500226
  175. Zhang X.C., Li J.Y., Liu J.L., Yuan C.X., Li Y.N., Liu B.R. et al. Temporal shifts in cyanobacterial diversity and their relationships to different types of biological soil crust in the southeastern Tengger desert // Rhizosphere. 2021. V. 17. Р. 100322. https://doi.org/10.1016/j.rhisph.2021.100322
  176. Zhang Z., Wang K., Hao F., Shang J., Tang H., Qiu B. New types of atp-grasp ligase are associated with the novel pathway for complicated mycosporine-like amino acid production in desiccation-tolerant cyanobacteria // Environ. Microbiol. 2021. V. 23 Р. 6420–6432.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies