Methods for Measuring Organic Carbon Content in Carbonate Soils (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In world practice, the measurement of the mass fraction of carbon of organic compounds (Corg) in soils containing carbonates is carried out in various ways. An analysis of methods that allow solving this problem was carried out, including the latest approaches: thermogravimetry, differential scanning calorimetry, spectroscopy. It has been shown that the presence of CaCO3 does not prevent the use of the dichromatometric method (Tyurin, Walkley-Black) for determining Corg. The disadvantages of the method boil down to the laboriousness of the analysis, the need for constant presence of the operator, incomplete oxidation of organic compounds and environmental pollution. The method of measuring soil mass loss-on-ignition (LOI) is economical and rapid, but it gives an overestimated Corg content, which is associated with the inadequacy of the conversion factor of 1.724, the presence of adsorbed and chemically bound water, as well as mineral components decomposing at T = 105–550°С. The most relevant solution for finding Corg in carbonate soils is to use an analyzer and a calcimeter, although the accuracy of Corg measurements in the presence of carbonates is significantly reduced due to the quadratic summation of the errors of the two methods. The high cost of the device, maintenance, verification and repair limit its widespread use in soil laboratories. To measure the content of soil carbonates, it is possible to use both gravimetric (LOI) and volumetric (calcimeter) methods. The use of the latter is preferable for soils with a predominance of CaCO3 in carbonate composition. Preliminary removal of carbonates from soil samples is labor-intensive and can lead to partial loss of Corg due to acid extraction. The high cost of instruments and the lack of libraries of soil spectra hinder the development of vis-NIR and MIR spectroscopy as an alternative to “wet” chemistry methods. Continuing comparative studies will improve the understanding of the spatial patterns of distribution of carbon in soil organic compounds.

About the authors

E. V. Shamrikova

Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: shamrik@ib.komisc.ru
Russian Federation, Syktyvkar

E. V. Vanchikova

Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

Email: shamrik@ib.komisc.ru
Russian Federation, Syktyvkar

E. V. Kyzyurova

Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

Email: shamrik@ib.komisc.ru
Russian Federation, Syktyvkar

E. V. Zhangurov

Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences

Email: shamrik@ib.komisc.ru
Russian Federation, Syktyvkar

References

  1. Воробьева Л.А. Химический анализ почв. М.: Изд-во Моск. ун-та, 1998. 270 с.
  2. Когут Б.М., Милановский Е.Ю., Хаматнуров Ш.А. О методах определения содержания органического углерода в почвах (критический обзор) // Бюл. Почв. ин-та им. В.В. Докучаева. 2023. № 114. С. 5–28. https://doi.org/10.19047/0136-1694-2023-114-5-28
  3. Пономарева В.В., Плотникова Т.А. Гумус и почвообразование. Л.: Наука, 1980. 438 с.
  4. Шамрикова Е.В., Ванчикова Е.В., Кондратёнок Б.М., Лаптева Е.М., Кострова С.Н. Проблемы и ограничения дихроматометрического метода измерения содержания почвенного органического вещества (обзор) // Почвоведение. 2022. № 7. С. 787–794. https://doi.org/10.31857/S0032180X22070097
  5. Шамрикова Е.В., Груздев И.В., Пунегов В.В., Ванчикова Е.В., Ветошкина А.А. Индивидуальные органические соединения водных вытяжек из подзолистых почв Республики Коми // Почвоведение. 2012. № 10. С. 1068–1076.
  6. Шамрикова Е.В., Жангуров Е.В., Кулюгина Е.Е., Королев М.А., Кубик О.С., Туманова Е.А. Почвы и почвенный покров горно-тундровых ландшафтов Полярного Урала на карбонатных породах: разнообразие, классификация, распределение углерода и азота // Почвоведение. 2020. № 9. С. 1053–1070. https://doi.org/10.31857/S0032180X20090154
  7. Шамрикова Е.В., Кубик О.С., Денева С.В., Пунегов В.В. Состав водорастворимой фракции почв побережья Баренцева моря: органический углерод и азот, низкомолекулярные компоненты // Почвоведение. 2019. № 11. С. 1322–1338. https://doi.org/10.1134/S0032180X19110108
  8. Шамрикова Е.В., Кубик О.С., Пунегов В.В., Груздев И.В. Влияние разнообразия биоты на состав низкомолекулярных водорастворимых органических соединений почв южной тундры // Почвоведение. 2014. № 3. С. 295–303. https://doi.org/10.7868/S0032180X14030101
  9. Ahmed Z.U., Woodbury P.B., Sanderman J., Hawke B., Jauss V., Solomon D., Lehmann J. Assessing soil carbon vulnerability in the Western USA by geospatial modeling of pyrogenic and particulate carbon stocks // J. Geophys. Res. Biogeosci. 2017. V. 122. P. 354–369. https://doi.org/10.1002/2016JG003488
  10. Apesteguia M., Plante A.F., Virto I. Methods assessment for organic and inorganic carbon quantification in calcareous soils of the Mediterranean region // Geoderma Regional. 2018. V. 12. P. 39–48. https://doi.org/10.1016/j.geodrs.2017.12.001
  11. Bao S. Soil Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. P. 178–200 (in Chinese).
  12. Barthès B.G., Kouakoua E., Moulin P., Hmaidi K., Gallali T., Clairotte M., Bernoux M., Bourdon E., Toucet J., Chevallier T. Studying the physical protection of soil carbon with quantitative infrared spectroscopy // J. Near Infrared Spectrosc. 2016. V. 24. P. 199–214. https://doi.org/10.1255/jnirs.1232
  13. Batjes N.H. Total carbon and nitrogen in the soils of the world // Eur. J. Soil Sci. 1996. V. 47. P. 151–163.
  14. Bellon-Maurel V., McBratney, A.B. Near-infrared (NIR) and mid-infrared (MIR) spectroscopic techniques for assessing the amount of carbon stock in soils – criticalreview and research perspectives // Soil Biol. Biochem. 2011. V. 43. P. 1398–1410. https://doi.org/10.1016/j.soilbio.2011.02.019
  15. Ben-Dor E., Banin A. Determination of organic matter content in arid-zone soils using a simple “loss-on-ignition” method // Commun. Soil Sci. Plant Anal. 1989. V. 20 (15–16). P. 1675–1695. https://doi.org/10.1080/00103628909368175
  16. Bergh E.L., Calderon F.J., Clemensen A.K., Durso L., Eberly J.O., Halvorson J.J., Jin V.L., Margenot A.J., Stewart C.E., Pelt S.V., Liebig M.A. Time in a bottle: Use of soil archives for understanding long-term soil change // Soil Sci. Soc. Am. J. 2022. V. 1–8. P. 520–527. https://doi.org/10.1002/saj2.20372
  17. Biney J.K.M., Saberioon M., Borůvka L., Houška J., Vašát R., Agyeman P.C., et al. Exploring the suitability of UAS based multispectral images for estimating soil organic carbon: Comparison with proximal soil sensing and spaceborne imagery // Remote Sensing. 2021. V. 13. P. 1–19. https://doi.org/10.3390/rs13020308
  18. Bisutti I., Hilke I., Schumacher J., Raessler M. A novel single-run dual temperature combustion (SRDTC) method for the determination of organic, in-organic and total carbon in soil samples // Talanta. 2007. V. 71(2). P. 521–528.
  19. Blake L., Goulding K.W.T., Mott C.J.B., Poulton P.R. Temporal changes in chemical properties of air-dried stored soils and their interpretation for long-term experiments // Eur. J. Soil Sci. 2000. V. 51. P. 345–353. https://doi.org/10.1046/j.1365-2389.2000.00307.x
  20. Boyle J.F. A comparison of two methods for estimating the organic matter content of sediments // J. Paleolimnol. 2004. V. 31. P. 125–127. https://doi.org/10.1023/B:JOPL.0000013354.67645.DF
  21. Brauer A., Mingram J., Franc U., Gunter C., Schettler G., Wulf S., Zolitschka B., Negendank J.F.W. Abrupt environmental oscillations during the Early Weichselian recorded at Lago Grande di Monticchio, southern Italy // Quat. Int. 2000. V. 73–74. P. 79–90. https://doi.org/10.1016/S1040-6182(00)00066-5
  22. Brodie C.R., Leng M.J., Casford J.S.L., Kendrick C.P., Lloyd J.M., Yongqiang Z., Bird M.I. Evidence for bias in C and N concentrations and δ13C composition of terrestrial and aquatic organic materials due to pre-analysis acid preparation methods // Chem. Geol. 2011. V. 282(3–4). P. 67–83. https://doi.org/10.1016/j.chemgeo.2011.01.007
  23. Brus D.J. Statistical approaches for spatial sample survey: Persistent misconceptions and new developments // Eur. J. Soil Sci. 2021. V. 72. P. 686–703. https://doi.org/10.1111/ejss.12988
  24. Bughio M.A., Wang P., Meng F., Qing C., Kuzyakov Y., Wang X., Junejo S.A. Neoformation of pedogenic carbonates by irrigation and fertilization and their contribution to carbon sequestration in soil // Geoderma. 2016. V. 262. P. 12–19. https://doi.org/10.1016/j.geoderma.2015.08.003
  25. Chan K.Y., Conyers M.K., Li G.D., Helyar K.R.C., Poile G., Oates A. Soil carbon dynamics under different cropping and pasture management in temperate Australia: Results of three long – term experiments // Soil Research. 2011. V. 49. P. 320–328. https://doi.org/10.1071/SR10185
  26. Chatterjee A., Lal R., Shrestha R.K., Ussiri D.A.N. Soil carbon pools of reclaimed minesoils under grass and forest landuses // Land Degrad. Dev. 2009. V. 20. P. 300–307. https://doi.org/10.1002/ldr.916
  27. Chen L., Jing X., Flun D.F.B., Shi Y., Kuhn P., Scholten T., He J.S. Changes of carbon stocks in alpine grassland soils from 2002 to 2011 on the Tibetan Plateau and their climatic causes // Geoderma. 2017. V. 288. P. 166–174. https://doi.org/10.1016/j.geoderma.2016.11.016
  28. Chen Y., Barak P. Iron nutrition of plants in calcareous soils // Adv. Agron. 1982. V. 35. P. 217–240.
  29. Clairotte M., Grinand C., Kouakoua E., Thébault A., Saby N.P.A., Bernoux M., Barthès B.G. National calibration of soil organic carbon concentration using diffuse infrared reflectance spectroscopy // Geoderma. 2016. V. 276. P. 41–52. https://doi.org/10.1016/j.geoderma.2016.04.021
  30. Comstock J.P., Sherpa S.R., Ferguson R., Bailey S., Beem-Miller J.P., Lin F., Lehmann J., Wolfe D.W. Carbonate determination in soils by mid-IR spectroscopy with regional and continental scale models // PLoS ONE. 2019. V. 14 (2). P. e0210235. https://doi.org/10.1371/journal.pone.0210235
  31. Davis M.R., Alves B.J.R., Karlen D.L., Kline K.L., Galdos M., Abulebdeh D. Review of soil organic carbon measurement protocols: A US and Brazil comparison and recommendation // Sustainability. 2018. V. 10. P. 4–8. https://doi.org/10.3390/su10010053
  32. De Nobili M., Contin M., Brookes P.C. Microbial biomass dynamics in recently air-dried and rewetted soils compared to others stored air-dry for up to 103 years // Soil Biol. and Biochem. 2006. V. 38. P. 2871–2881. https://doi.org/10.1016/j.soilbio.2006.04.044
  33. De Vos B., Lettens S., Muys B., Deckers J.A. Walkley-Black analysis of forest soil organic carbon: Recovery, limitations and uncertainty // Soil Use and Management. 2007. V. 23. P. 221–229. https://doi.org/10.1111/j.1475-2743.2007.00084.x
  34. Dhillon G.S., Amichev B.Y., Freitas R., Rees K. Accurate and Precise Measurement of Organic Carbon Content in Carbonate-Rich Soils // Commun. Soil Sci. Plan. 2015. V. 46(21). P. 2707–2720. https://doi.org/10.1080/00103624.2015.1089271
  35. Díaz-Zorita M., Grove J.H., Perfect E. Sieving duration and sieve loading impacts on dry soil fragment size distributions // Soil and Tillage Research. 2007. V. 94. P. 15–20. https://doi.org/10.1016/j.still.2006.06.006
  36. FAO. A protocol for measurement, monitoring, reporting and verification of soil organic carbon in agricultural landscapes-GSOC-MRV protocol. Rome, Italy, 2020а. 113 p. https://doi.org/10.4060/cb0509en
  37. FAO. Global Soil Laboratory Network. Standard operating procedure for soil calcium carbonate equivalent. Volumetric Calcimeter method. Rome: FAO, 2020. 17 р. https://www.fao.org/3/ca8620en/ca8620en.pdf
  38. FAO. Global Soil Laboratory Network. Standard operating procedure for soil organic carbon Tyurin spectrophotometric method. Rome: FAO, 2021. 18 p. https://www.fao.org/3/cb4757en/cb4757en.pdf
  39. FAO. Global Soil Laboratory Network. Standard operating procedure for soil organic carbon Walkley-Black method: Titration and colorimetric method. Rome: FAO, 2020в. 25 p. https://www.fao.org/3/ca7471en/ca7471en.pdf
  40. FAO. Soil Organic Carbon Mapping Cookbook 2nd edition. Rome: FAO, 2018. 223 p. https://www.fao.org/3/I8895EN/i8895en.pdf
  41. FAO. Soil spectroscopy training material: A primer on soil analysis using visible and near-infrared (vis-NIR) and mid-infrared (MIR) spectroscopy. Rome: FAO, 2022. 19 p. https://www.fao.org/3/cb9005en/cb9005en.pdf
  42. Fordyce F., Brereton N., Hughes J., Reay G., Thomas L., Walker A., Luo W., Lewis, J. The Selenium Content of Scottish Soil and Food Products // Commissioned by the Food Standards Agency. Scotland. Project Code S14042, 2009. 116 p.
  43. Friesen S.D., Dunn C., Freeman C. Decomposition as a regulator of carbon accretion in mangroves: a review // Ecol. Eng. 2018. V. 114. P. 173–178. https://doi.org/10.1016/j.ecoleng.2017.06.069
  44. Gao Y., Tian J., Pang Y., Liu J. Soil inorganic carbon sequestration following afforestation is probably induced by pedogenic carbonate formation in Northwest China // Front. Plant Sci. 2017. V. 8. P. 1282. https://doi.org/10.3389/fpls.2017.01282
  45. Ge Z., An T., Bol R., Li S., Zhu P., Peng C., Xu Y., Cheng N., Li T., Wu Y., Xie N., Wang J. Distributions of straw-derived carbon in Mollisol’s aggregates under different fertilization practices // Scientific Reports. 2021. V. 11. P. 1–9. https://doi.org/10.1038/s41598-021-97546-3
  46. Gogé F., Joffre R., Jolivet C., Ross I., Ranjard L. Optimization criteria in sample selection step of local regression for quantitative analysis of large soil NIRS database // Chemom. Intell. Lab. Syst. 2012. V. 110. P. 168–176.
  47. Goh T.B., Arnaud R.J.S., Mermut A.R. Carbonates // Soil Sampling and Methods of Analysis. Boca Raton, FL: Lewis Publishers. CRC Press, 2013. P. 177–185.
  48. Gomez C., Chevallier T., Moulin P., Bouferra I., Hmaidi K., Arrouays D., Barthès B.G. Prediction of soil organic and inorganic carbon concentrations in Tunisian samples by mid-infrared reflectance spectroscopy using a French national library // Geoderma. 2020. V. 375. P. 114469. https://doi.org/10.1016/j.geoderma.2020.114469
  49. Grahmann K., Terra J.A., Ellerbrock R., Rubio V., Barro R., Caamaño A., Quincke A. Data accuracy and method validation of chemical soil properties in long-term experiments: Standard operating procedures for a non-certified soil laboratory in Latin America // Geoderma Regional. 2022. V. 28. P. e00487. https://doi.org/10.1016/j.geodrs.2022.e00487
  50. Grahmann K., Zwink M., Barkusky D., Verch G., Sommer M. The dilemma of analytical method changes for soil organic carbon in long-term experiments // Eur. J. Soil Sci. 2023. V. 74. P. e13362. https://doi.org/10.1111/ejss.13362
  51. Guo Y., Wang X., Li X., Wang J., Xu M., Li D. Dynamics of soil organic and inorganic carbon in the cropland of upper Yellow River Delta, China // Sci. Rep. 2016. V. 6. P. 36105.
  52. Harris D., Horwáth W.R., Van Kessel C. Acid fumigation of soils to remove carbonates prior to total organic carbon or carbon-13 isotopic analysis // Soil Sci. Soc. Am. J. 2001. V. 65(6). P. 1853–1856. https://doi.org/10.2136/sssaj2001.1853
  53. Hartman M., Svoboda K., Poherely M., Syc M. Thermal Decomposition of Sodium Hydrogen Carbonate and Textural Features of Its Calcines // Ind. Eng. Chem. Res. 2013. V. 52. P. 10619–10626. https://doi.org/10.1021/IE400896C
  54. Hoogsteen M.J.J., Lantinga E.A., Bakker E.J., Tittonell P.A. An Evaluation of the Loss-on-Ignition Method for Determining the Soil Organic Matter Content of Calcareous Soils // Commun. Soil Sci. Plant Anal. 2018. V. 49(13). P. 1541–1552. https://doi.org/10.1080/00103624.2018.1474475
  55. Jensen J.L., Christensen B.T., Schjønning P., Watts C. W., Munkholm L.J. Converting loss-on-ignition to organic carbon content in arable topsoil: Pitfalls and proposed procedure // Eur. J. Soil Sci. 2018. V. 69. P. 604–612. https://doi.org/10.1111/ejss.12558
  56. Kamara A., Rhodes E.R., Sawyerr P.A. Dry combustion carbon, Walkley-Black carbon, and loss on ignition for aggregate size fractions on a toposequence // Commun. Soil Sci. Plant Anal. 2007. V. 38(15–16). P. 2005–2012. https://doi.org/10.1080/00103620701548639
  57. Kristl M., Muršec M., Šuštar V., Kristl J. Application of thermogravimetric analysis for the evaluation of organic and inorganic carbon contents in agricultural soils // J. Therm. Anal. Calorim. 2016. V. 123. P. 2139–2147. https://doi.org/10.1007/s10973-015-4844-1
  58. Lal R.J., Kimble M. Pedogenic carbonates and the global C cycle // Global Climate Change and Pedogenic Carbonates. Boca Raton, FL: Lewis Publishers, 2000. P. 1–14.
  59. Lal R. Sequestering carbon in soils of agro-ecosystems // Food Policy. 2011. V. 36. P. S33–S39. https://doi.org/10.1016/j.foodpol.2010.12.001.
  60. Lehmann J., Kleber M. The contentious nature of soil organic matter // Nature. 2015. V. 528. P. 60–68. https://doi.org/10.1038/nature16069
  61. Lettens S., Vos B., Quataert P. et al. Variable carbon recovery of Walkley-Black analysis and implica-tions for national soil organic carbon accounting // Eur. J. Soil Sci. 2007. V. 58. P. 1244–1253. https://doi.org/10.1111/j.1365-2389.2007.00916.x
  62. Leue M., Hoffmann C., Hierold W., Sommer M. In-situ multi-sensor characterization of soil cores along an erosiondeposition gradient // Catena. 2019. V. 82. P. 104140. https://doi.org/10.1016/j.catena.2019.104140
  63. Li N., Sack D., Sun J., Liu S., Liu B., Wang J., Gao G., Li D., Song Z., Jie D. Quantifying the carbon content of aeolian sediments: Which method should we use? // Catena. 2020. V. 185. P. 104276. https://doi.org/10.1016/j.catena.2019.104276
  64. Lopez-Sangil L., Rovira P. Sequential chemical extractions of the mineral-associated soil organic matter: an integrated approach for the fractionation of organo-mineral complexes // Soil Biol. Biochem. 2013. V. 62. P. 57–67. https://doi.org/10.1016/j.soilbio.2013.03.004
  65. Lu T., Wang X., Xu M., Yu Z., Luo Y., Smith P. Dynamics of pedogenic carbonate in the cropland of the North China Plain: Influences of intensive cropping and salinization // Agric. Ecosyst. Environ. 2020. V. 292. P. 106820.
  66. Maher D.T., Santos I.R., Golsby-Smith L., Gleeson J., Eyre B.D. Groundwater derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink? // Limnology and Oceanography. 2013. V. 58(2). P. 475–488. https://doi.org/10.4319/lo.2013.58.2.0475
  67. Menditto A., Patriarca M., Magnusson B. Understanding the meaning of accuracy, trueness and precision // Accreditation and Quality Assurance. 2007. V. 12. P. 45–47. https://doi.org/10.1007/s00769-006-0191-z
  68. Navarro A.F., Roig A., Cegarra J., Bernal M.P. Relationship between total organic carbon and oxidizable carbon in calcareous soils // Commun. Soil Sci. Plan. 1993. V. 24(17–18). P. 2203–2212. https://doi.org/10.1080/00103629309368949
  69. Olson K.R., Al-Kaisi M.M., Lal R., Lowery B. Experimental consideration, treatments, and methods in determining soil organic carbon sequestration rates // Soil Sci. Soc. Am. J. 2014. V. 78. P. 348–360. https://doi.org/10.2136/sssaj2013.09.0412
  70. O’Rourke S.M., Angers D.A., Holden N.M., McBratney A.B. Soil organic carbon across scales // Global Change Biology. 2015. V. 21. P. 3561–3574. https://doi.org/10.1111/gcb.12959
  71. Pansu M., Gautheyrou J. Carbonates // Handbook of Soil Analysis. Berlin, Germany: Springer-Verlag, 2006. P. 593–604.
  72. Peralta G., Di Paolo L., Luotto I., Omuto C., Mainka M., Viatkin K., Yigini Y. Global soil organic carbon sequestration potential map (GSOCseq v1.1). Technical manual. FAO: Rome, Italy, 2022. 225 p. https://doi.org/10.4060/cb2642en
  73. Pillot D., Deville E., Prinzhofer A. Identification and Quantification of Carbonate Species Using Rock-Eval Pyrolysis // Oil & Gas Science and Technology – Rev. IFP Energies nouvelles. 2014. V. 69. P. 341–349. https://doi.org/10.2516/ogst/2012036
  74. Poeplau C., Bolinder M.A., Kätterer T. Towards an unbiased method for quantifying treatment effects on soil carbon in long-term experiments considering initial within-field variation // Geoderma. 2016. V. 267. P. 41–47. https://doi.org/10.1016/j.geoderma.2015.12.026
  75. Pribyl D.W. A critical review of the conventional SOC to SOM conversion factor // Geoderma. 2010. V. 156. P. 75–83. https://doi.org/10.1016/j.geoderma.2010.02.003
  76. Rayment G.E., Miller R.O., Sulaeman E. Proficiency testing and other interactive measures to enhance analytical quality in soil and plant laboratories // Commun. Soil Sci. Plant Anal. 2000. V. 31. P. 1513–1530. https://doi.org/10.1080/00103620009370523
  77. Reithmaier G.M.S., Ho D.T., Johnston S.G., Maher D.T. Mangroves as a source of greenhouse gases to the atmosphere and alkalinity and dissolved carbon to the coastal ocean: A case study from the Everglades National Park, Florida // J. Geophys. Res. Biogeosci. 2020. V. 125(12). P. e2020JG005812. https://doi.org/10.1029/2020JG005812.
  78. Rodriguez J.B., Self J.R., Arriaga F.J. A simple, gravimetric method to quantify inorganic carbon in calcareous soils // Soil Sci. Soc. Am. J. 2016. V. 80(4). P. 1107–1113.
  79. Romanyà J., Rovira P. An appraisal of soil organic C content in Mediterranean agricultural soils // Soil Use Manag. 2011. V. 27. P. 321–332. https://doi.org/10.1111/j.1475-2743.2011.00346.x
  80. Romanyà J., Rovira P. Organic and inorganic P reserves in rain-fed and irrigated calcareous soils under longterm organic and conventional agriculture // Geoderma. 2009. V. 151. P. 378–386. https://doi.org/10.1016/J.GEODERMA.2009.05.009
  81. Roper W.R., Robarge W.P., Osmond D.L., Heitman J.L. Comparing four methods of measuring soil organic matter in North Carolina soils // Soil Sci. Soc. Am. J. 2019. V. 83(2). P. 466–474. https://doi.org/10.2136/SSSAJ2018.03.0105
  82. Rosen M.R., Chague-Goff C., Esre P., Goshell L. Utilisation of the sedimentological and hydrochemical dynamics of the Stump Bay Wetland along Lake Taupo, New Zealand, for the recognition of paleo-shoreline indicators // Sediment. Geol. 2002. V. 148. P. 357–371. https://doi.org/10.1016/S0037-0738(01)00226-3
  83. Santi C., Certini G., D’Acqui L.P. Direct Determination of Organic Carbon by Dry Combustion in Soils with Carbonates // Commun. Soil Sci. Plant Anal. 2006. V. 37(1–2) P. 155–164. https://doi.org/10.1080/00103620500403531
  84. Schulten H.R. Direct pyrolysis-mass spectrometry of soils: A novel tool in agriculture, ecology, forestry, and soil science // Mass Spectrometry of Soils. New York: Marcel Dekker, 1996. P. 373–436.
  85. Sebag D., Verrecchia E.P., Cecillon L., Adatte T., Albrecht R., Aubert M., Bureau F., Cailleau G., Copard Y., Decaens T., Disnar J.R., Hetenyi M., Nyilas T., Trombino L. Dynamics of soil organic matter based on new Rock-Eval indices // Geoderma. 2016. V. 284. P. 185–203.
  86. Shamrikova E.V., Kondratenok B.M., Tumanova E.A., Vanchikova E.V., Lapteva E.M., Zonova T.V., Lu-Lyan-Min E.I., Davydova A.P., Libohova Z., Suvannang N. Transferability between soil organic matter measurement methods for database harmonization // Geoderma. 2022а. V. 412. P. 115547. https://doi.org/10.1016/j.geoderma.2021.115547
  87. Shamrikova E.V., Vanchikova E.V., Lu-Lyan-Min E.I., Kubik O.S., Zhangurov E.V. Which method to choose for measurement of oranic and inorganic carbon content in carbonate-rich soils? Advantages and disadvantages of dry and wet chemistry // Catena. 2023. V. 228. P. 107151. http://dx.doi.org/10.1016/j.catena.2023.107151
  88. Shamrikova E., Yakovleva E., Gabov D., Zhangurov E., Korolev M., Zazovskaya E. Polyarenes distribution in the soil-plant system of reindeer pastures in the Polar Urals // Agronomy. 2022b. V. 12(2), 372–389. https://doi.org/10.3390/agronomy12020372
  89. Shi Z., Ji W., Viscarra-Rossel R.A., Chen S., Zhou Y. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis–NIR spectral library // Eur. J. Soil Sci. 2015. V. 66. P. 679–687. https://doi.org/10.1111/ejss.12272
  90. Singh K., Murphy B.W., Marchant B.P. Towards cost-effective estimation of soil carbon stocks at the field scale // Soil Research. 2013. V. 50(8). P. 672–684. https://doi.org/10.1071/SR12119
  91. Skjemstad J.O., Taylor J.A. Does the Walkley-Black method determine soil charcoal? // Commun. Soil Sci. Plan. 1999. V. 30. P. 2299–2310. https://doi.org/10.1080/00103629909370373
  92. Sleutel S., De Neve S., Singier B., Hofman G. Quantification of organic carbon in soils: a comparison of methodologies and Assessment of the Carbon Content of Organic Matter // Commun. Soil Sci. Plant Anal. 2007. V. 38. P. 2647–2657. https://doi.org/10.1080/00103620701662877
  93. Soriano-Disla J.M., Janik L.J., Viscarra Rossel R.A., MacDonald L.M., McLaughlin M.J. The performance of visible, near-, and mid-infrared reflectance spectroscopy for prediction of soil physical, chemical, and biological properties // Appl. Spectrosc. Rev. 2014. V. 49(2). P. 139–186. https://doi.org/10.1080/05704928.2013.811081
  94. Stevens A., Nocita M., Tóth G., Montanarella L., van Wesemael B. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy // PLoS ONE. 2013. V. 8(6). P. e66409. https://doi.org/10.1371/journal.pone.0066409
  95. Verardo D.J., Froelich P.N. McIntyre A. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyzer // Deep Sea Research Part A. Oceanogr. Res. Pap. 1990. V. 37(1). P. 157–165.
  96. Virto I., Antón R., Plante A. Role of Carbonates in the Physical Stabilization of Soil Organic Matter in Agricultural Mediterranean Soils // Geology. Chapter 9, 2018. P. 121–136. https://doi.org/10.1016/B978-0-12-812128-3.00009-4
  97. Viscarra Rossel R.A., Behrens T., Ben-Dor E., Brown D.J., Demattê J.A.M., Shepherd K.D., Shi Z., et al. A global spectral library to characterize the world’s soil // Earth Sci. Rev. 2016. V. 155. P. 198–230. https://doi.org/10.1016/j.earscirev.2016.01.012
  98. Vitti C., Stellacci A.M., Leogrande R., Mastrangelo M., Cazzato E., Ventrella D. Assessment of organic carbon in soils: a comparison between the Springer-Klee wet digestion and the dry combustion methods in Mediterranean soils (Southern Italy) // Catena. 2016. V. 137. P. 113–119. https://doi.org/10.1016/j.catena.2015.09.001
  99. Vuong T.X., Heitkamp F., Jungkunst H.F., Reimer A., Gerhard G. Simultaneous measurement of soil organic and inorganic carbon: evaluation of a thermal gradient analysis // J. Soils Sediments. 2013. V. 13(7). P. 1133–1140. https://doi.org/10.1007/s11368-013-0715-1
  100. Wang Q., Li Y., Wang Y. Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources // Environ. Monit. Assess. 2011. V. 174. P. 241–257. https://doi.org/10.1007/s10661-010-1454-z
  101. Wang Q., Seki K., Miyazaki T., Ishihama Y. The causes of soil alkalinization in the Songnen Plain of Northeast China // Paddy Water Environ. 2009. V. 7(3). P. 259–270. https://doi.org/10.1007/s10333-009-0166-x
  102. Wang X., Wang J., Zhang J. Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China // PLoS ONE. 2012. V. 7(8). P. e44334. https://doi.org/10.1371/journal.pone.0044334
  103. Włodarczyk T., Szarlip P., Kozieł W., Nosalewicz M., Brzeziñska M., Pazur M., Urbanek E. Effect of long storage and soil type on the actual denitrification and denitrification capacity to N2O formation // International Agrophysics. 2014. V. 28. P. 371–381. https://doi.org/10.2478/intag-2014-0027
  104. Workman J., Mark H. Limitations in analytical accuracy, part I: Horwitz’s trumpet // Spectroscopy 2006. V. 21(9). P. 19–24.
  105. Wright A.L., Wang Y., Reddy K.R. Loss-on-Ignition Method to Assess Soil Organic Carbon in Calcareous Everglades Wetlands // Commun. Soil Sci. Plant Anal. 2008. V. 39(19–20). P. 3074–3083. https://doi.org/10.1080/00103620802432931
  106. Xu S., Silveira M.L., Ngatia L.W. Normand A.E., Sollenberger L.E., Ramesh Reddy K. Carbon and nitrogen pools in aggregate size fractions as affected by sieving method and land use intensification // Geoderma. 2017. V. 305. P. 70–79. https://doi.org/10.1016/j.geoderma.2017.05.044
  107. Yang Y., Fang J., Ji C., Ma W., Su S., Tang Z. Soil inorganic carbon stock in the Tibetan alpine grasslands // Global Biogeochem. Cycles. 2010. V. 24(4). P. GB4022. https://doi.org/10.1029/2010GB003804
  108. Yang Y., Ma X., Wang L., Fu X., Zhang J. Evaluation of three methods used in carbonate content determination for lacustrine sediments // J. Lake Sci. 2016. V. 28(4). P. 917–924 (in Chinese). https://doi.org/10.18307/2016.0426
  109. Zamanian K., Pustovoytov K., Kuzyakov Y. Pedogenic carbonates: forms and formation processes // Earth Sci. Rev. 2016. V. 157. P. 1–17. https://doi.org/10.1016/j.earscirev.2016.03.003.
  110. Zamanian K., Zarebanadkouki M., Kuzyakov Y. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment // Glob Change Biol. 2018. V. 24(7). P. 2810–2817. https://doi.org/10.1111/gcb.14148
  111. Zamanian K., Zhou J., Kuzyakov Y. Soil carbonates: The unaccounted, irrecoverable carbon source // Geoderma. 2021. V. 384. P. 114817. https://doi.org/10.1016/j.geoderma.2020.114817
  112. Zhao J., Luo X., Ma Y., Shao T., Yue Y. Soil characteristics and new formation model of loess on the Chinese Loess Plateau // Geosci. J. 2017. V. 21. P. 607–616. https://doi.org/10.1007/s12303-016-0069-y

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies