The Effect of Mechanical Activation on Some Soil Properties and Plant Development

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Humic substances effect on a number of soil properties: structure formation, formation of cation exchange capacity, increase in water retention capacity, etc. At the same time, humic substances in soils and solutions do not exist in the form of individual molecules, but in the form of molecular associations having a fractal-cluster organization (F-clusters). Therefore, F-clusters should exert their influence on the properties of soils. Since these formations are strongly interconnected, their separation is necessary to assess their influence on soil properties. This can be done by mechanical activation – increasing the reactivity (activity) of substances during their mechanical processing. The aim of the paper was to study the effect of mechanical activation on some soil properties and on the development of plants in activated soils. It is shown that the field moisture capacity of samples of zonal soil types when using mechanical activation increases to 35% of the initial value. The results are explained from the standpoint of reducing the mobility of gravitational water by F-clusters in macrocapillaries. The optical density of aqueous extracts from chernozem increased by 75%, the viscosity of soil pastes increased by 57% due to an increase in the number of F–clusters in the soil solution. Activated soils stimulated wheat seed germination by 26%. This effect may be associated with the formation of films of F-clusters on the surface of seeds, which fix soil allelotoxins that slow down the development of seeds.

Full Text

Restricted Access

About the authors

G. N. Fedotov

Faculty of Soil Science, Lomonosov Moscow State University

Author for correspondence.
Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow, 119991

I. V. Gorepekin

Faculty of Soil Science, Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow, 119991

D. A. Ushkova

Faculty of Soil Science, Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow, 119991

U. A. Konkina

Faculty of Soil Science, Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow, 119991

A. I. Sukharev

Faculty of Soil Science, Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow, 119991

D. I. Potapov

Faculty of Soil Science, Lomonosov Moscow State University

Email: gennadiy.fedotov@gmail.com
Russian Federation, Moscow, 119991

References

  1. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв и грунтов. М.: Высшая школа, 1973. 400 с.
  2. Евдокимов И.П., Лосев А.П. Природные нанообъекты в нефтегазовых средах. М.: РГУ нефти и газа им. И.М. Губкина, 2008. 104 с.
  3. Ломовский О.И., Болдырев В.В. Механохимия в решении экологических задач. Аналитический обзор. Новосибирск, 2006. 221 с.
  4. Орлов Д.С. Гумусовые кислоты почв и общая теория гумификации. М.: Изд-во МГУ, 1990. 325 с.
  5. Осипов В.И., Соколов В.H., Румянцева Н.А. Микроструктура глинистых пород. M.: Недра, 1989. 211 с.
  6. Супрамолекулярная химия: Концепции и перспективы / Пер. с англ. Болдыревой Е.В. Новосибирск: Наука. Сиб. отд. РАН, 1998. 334 с.
  7. Тюлин А.Ф. Органно-минеральные коллоиды в почве, их генезис и значение для корневого питания высших растений. М.: Изд-во АН СССР, 1958. 52 с.
  8. Федотов Г.Н., Горепекин И.В., Позднякова А.Д., Завгородняя Ю.А., Исакова С.А. Взаимосвязь предыстории использования и химических свойств почв с их аллелотоксичностью // Почвоведение. 2020. № 3. С. 379–386. https://doi.org/10.31857/S0032180X2003003X
  9. Федотов Г.Н., Добровольский Г.В. Возможные пути формирования нано- и микроструктур в гумусовых веществах почвенных гелей // Почвоведение. 2012. № 8. С. 908–920.
  10. Федотов Г.Н., Третьяков Ю.Д., Иванов В.К., Куклин А.И., Пахомов Е.И., Исламов А.Х., Початкова Т.Н. Фрактальные коллоидные структуры в почвах различной зональности // Доклады АН. 2005. Т. 405. № 3. С. 351–354.
  11. Шелаева Т.Б. Механохимическая активация стекольной шихты. Дис. … канд. техн. наук. М., 2015. 133 с.
  12. Шоба С.А., Шеин Е.В., Ушкова Д.А., Грачева Т.А., Салимгареева О.А., Федотов Г.Н. Физико-химические аспекты водоустойчивости почв // Доклады РАН. Науки о Земле. 2023. Т. 508. С. 139–143.
  13. Яминский И.В., Ахметова А.И., Мешков Г.Б. Программное обеспечение “ФемтоСкан Онлайн” и визуализация нанообъектов в микроскопии высокого разрешения // Наноиндустрия. 2018. Т. 11. № 6. С. 414–416.
  14. Angelico R., Colombo C., Di Iorio E., Brtnický M., Fojt J., Conte P. Humic substances: from supramolecular aggregation to fractal conformation – Is there time for a new paradigm? // Appl. Sci. 2023. V. 13. № 4. P. 2236.
  15. Fasurova N., Cechlovska H., Kucerik J. A comparative study of South Moravian lignite and standard IHSS humic acids’ optical and colloidal properties // Petroleum and Coal. 2006. V. 48. № 2. P. 24–32.
  16. Lehmann J., Kleber M. The contentious nature of soil organic matter // Nature. 2015. V. 528. P. 60–68.
  17. Оsterberg R., Mortensen K. Fractal dimension of humic acids. A small angle neutron scattering study // Eur. Biophys. J. 1992. V. 21. № 3. P. 163–167.
  18. Piccolo A., Pietramellara G., Mbagwu J.S.C. Use of humic substances as soil conditioners to increase aggregate stability // Geoderma. 1997. V. 75. № 3–4. P. 267–277.
  19. Rice J.A., Lin J.S. Fractal nature of humic materials // Environ. Science Technology.1993. V. 27. № 2. P. 413–414.
  20. Rice J.A., Tombacz E., Malekani K. Applications of light and X-ray scattering to characterize the fractal properties of soil organic matter // Geoderma. 1999. V. 88. № 3–4. P. 251–264.
  21. Schmidt M., Torn M., Abiven S. et al. Persistence of soil organic matter as an ecosystem property // Nature. 2011. V. 478. P. 49–56.
  22. Senesi N., Rizzi F.R., Dellino P., Acquafredda P. Fractal dimension of humic acids in aqueous suspension as a function of pH and time // Soil Sci. Soc. Am. J. 1996. V. 60. № 6. P. 1613–1678.
  23. Senesi N., Rizzi F.R., Dellino P., Acquafredda P. Fractal humic acids in aqueous suspensions at various concentrations, ionic strengths, and pH values. Colloids and Surfaces A. // Physicochem. Engineer. Aspects. 1997. V. 127. № 1–3. P. 57–68.
  24. Senesi N., Wilkinson K.J. Biophysical chemistry of fractal structures and processes in environmental systems. John Wiley & Sons, 2008. 342 p.
  25. Sutton R., Sposito G. Molecular structure in soil humic substances: The new view // Environ. Sci. Technol. 2005. V. 39. № 23. P. 9009–9015.
  26. Visser S.A. Physiological action of humic substances on microbial cells // Soil Biol. Biochem. 1985. V. 17. № 4. P. 457–462.
  27. Yang F., Tang C., Antonietti M. Natural and artificial humic substances to manage minerals, ions, water, and soil microorganisms // Chem. Soc. Rev. 2021. V. 50. № 10. P. 6221–6239.
  28. Zavarzina A.G., Danchenko N.N., Demin V.V., Artemyeva Z.S., Kogut B.M. Humic substances: hypotheses and reality (a review) // Eurasian Soil Science. 2021. V. 54. P. 1826–1854.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (166KB)
3. Fig.2

Download (66KB)
4. Рис. 3. Влияние механоактивации продавливанием влажных почв через сита с разным размером ячеек на НВ насыпных образцов почв: 1 – чернозем; 2 – серая лесная почва; 3 – дерново-подзолистая почва.

Download (52KB)
5. Fig.4

Download (79KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies