Determination of Thermophysical Parameters of the Soil According to Dynamic Data on its Temperature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Methods for determining the thermal diffusivity coefficient from a point value of soil temperature of a given thickness based on the results of analyzing the temperature dynamics at one depth based on eight daily observations with an interval of 3 hours have been developed. The proposed methods are based on solving (with two harmonics on the soil surface) inverse problems of the heat transfer equation. Experimental studies on the temperature of the layers (0, 5, 10, 15, 20 and 40 cm) of gley floodplain soil (Calcaric Gleyic Pantofluvic Fluvisol) in the Igdır region (Eastern Turkey) were carried out using Elitech RC-4 sensors during the summer season. Using the obtained data, various methods were used to calculate the thermophysical properties of the soil – thermal conductivity, thermal diffusivity, attenuation depth, heat transfer, and heat flux. Based on statistical criteria, it has been proven that the proposed point model is the best one. It has been established that for the studied soil, the thermal diffusivity is Ƙ = 1.1035 × 10⁻⁶ m²/s, thermal conductivity λ = 1.7612 W/(m °C), damping depth d = 17.42 cm, and thermal effusivity e = 27.9431 Wh0.5/m² °C. In addition, in accordance with the model obtained, it was determined that the largest heat flux on the soil surface occurs at 12:00 pm (q = 106.85 W/m²), and the lowest heat flux occurs at 03:00 am (q = –64.62 W/m²).

Full Text

Restricted Access

About the authors

R. Mikail

Igdir University

Email: fariz.mikailsoy@igdir.edu.tr

Department of Mathematics

Turkey, Igdır, 76000

E. Hazar

Igdir University

Email: fariz.mikailsoy@igdir.edu.tr

Department of Mathematics

Turkey, Igdır, 76000

E. Shein

LomonosovMoscow State University

Email: fariz.mikailsoy@igdir.edu.tr
Russian Federation, Moscow, 119991

F. Mikailsoy

Igdir University

Author for correspondence.
Email: fariz.mikailsoy@igdir.edu.tr

Department of Mathematics

Turkey, Igdır, 76000

References

  1. Болотов А.Г. Метод определения температуропроводности почвы // Вестник АГАУ. 2015. № 7. C. 74–79.
  2. Каганов М.А., Чудновский А.Ф. Об определении коэффициента теплопроводности почв // Изв. АН СССР. География. 1953. № 2. С. 183–191.
  3. Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 486 с.
  4. Колмогоров А.Н. К вопросу об определении коэффициента температуропроводности почвы // Изв. АН СССР. География и геофизика. 1950. № 2. С. 97–99.
  5. Куртенер Д.А., Решетин О.Л. Об одном решении уравнения теплопроводности в связи с расчетом температуры почвы // Теплообмен в открытом и защищенном грунте. Л.: Гидрометеоиздат, 1970. С. 38–45.
  6. Микайылoв Ф.Д., Шеин Е.В. Граничные условия при моделировании переноса тепла в почве // Агрофизика. 2014. № 4. С. 1–6.
  7. Нерпин С.В., Чудновский А.Ф. Физика почв. М.: Наука, 1967. 650 с.
  8. Тихонов А.Н., Самарский А.А. Уравнение математической физики. М.: Наука, 1966. 724 с.
  9. Цейтин Г.Х. О вычислении коэффициента температуропроводности и потока тепла в почву по осредненным температурам // Тр. ГГО. 1956. Вып. 60. С. 67–80.
  10. Шеин Е.В. Курс физики почв. М.: Изд-во МГУ, 2005. 432 с.
  11. Anonymous. Turkish State Meteorological Service. Igdir, 2020.
  12. An K., Wang W., Zhao Y., Huang W., Chen L., Zhang Z., Wang Q., Li W. Estimation from soil temperature of soil thermal diffusivity and heat flux in sub-surface layers // Bound. Layer Meteor. 2016. V. 158. P. 473–488. https://doi.org/10.1007/s10546-15-0096-7
  13. Black C.A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Properties. American Society of Agronomy and Soil Science Society of America, Madison. 1965. № 9. Р. 374–390.
  14. Blake G.R., Hartge K.H. Bulk density. In: Methods of Soil Analysis. Part I, Physical and Mineralogical Methods, ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. 1986. P. 363–381.
  15. Gao, Z. Determination of soil heat flux in a Tibetan short-grass prairie // Bound. Layer Meteorology. 2005. V. 114. P. 165–178. https://doi.org/10.1007/s10546-004-8661-5
  16. Gao Z., Russell E.S., Missik J.E.C., Huang M., Chen X., Strickland C.E., Clayton R., Arntzen E., Ma Y., Liu H. A novel approach to evaluate soil heat flux calculation: An analytical review of nine methods // J. Geophys. Res. Atmos. 2017. V. 122. P. 6934–6949. https://doi.org/10.1002/2017JD027160
  17. Gee G.W., Bauder J.W. Particle-size analysis. Methods of Soil Analysis. Part 1.
  18. Physical and Minerological Methods. Agronomy. 1986. V. 9. P. 383–441.
  19. Erdel E., Mikailsoy F. Determination of thermophysical properties of fluvisols in eastern turkey using various models // Eurasian Soil Science. 2022. V. 55. P. 1568–1576. https://doi.org/10.1134/S1064229322110047
  20. Heitman J.L., Horton R., Sauer T.J., Ren T., Xiao X. Latent heat in soil heat flux measurements // Agricultural and Forest Meteorology. 2010. V. 150. P. 1147–1153. https://doi.org/10.1016/j.agrformet.2010.04.017
  21. Horton R. Jr. Determination and use of soil thermal properties near the soil surface. Ph.D. New Mexico State University, Las Cruces, New Mexico, USA. 1982. 132 p. https://www.proquest.com/docview/ 303249135?pq-origsite=gscholar&fromopenview=true
  22. Mikail R., Hazar E., Farajzadeh A., Erdel E., Mikailsoy F. A comparison of six methods used to evaluate apparent thermal diffusivity for soils // Mathem. Anal. and Convex Optim. 2021. V. 2. P. 51–61. https://doi.org/10.29252/maco.2.1.5
  23. Mikailsoy F.D. On the influence of boundary conditions in modeling heat transfer in soil // J. Engineer. Phys. Thermophys. 2017. V. 90. Р. 67–79. https://doi.org/10.1007/s10891-017-1540-y
  24. Mikayilov F.D. and Shein E.V. Theoretical principles of experimental methods for determining the thermal diffusivity of soils // Eurasian Soil Science. 2010. V. 43. P. 556–564. https://doi.org/10.1134/S1064229310050091
  25. Walkley A., Black L.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method // Soil Science. 1934. V. 37. P. 29–38. https://doi.org/10.1097/00010694-193401000-00003
  26. Sauer T.J., Horton R. Soil heat flux // Micrometeorology in agricultural systems // Agron. Monogr. Madison. 2005. V. 47. P. 131–54. https://doi.org/10.2134/agronmonogr47.c7 https://www.elitechlog.com/wp-content/manuals/RC-4-RC-4HA-RC-4HC-instructions.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (129KB)
3. Fig.2

Download (141KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».