Determination of Thermophysical Parameters of the Soil According to Dynamic Data on its Temperature

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Methods for determining the thermal diffusivity coefficient from a point value of soil temperature of a given thickness based on the results of analyzing the temperature dynamics at one depth based on eight daily observations with an interval of 3 hours have been developed. The proposed methods are based on solving (with two harmonics on the soil surface) inverse problems of the heat transfer equation. Experimental studies on the temperature of the layers (0, 5, 10, 15, 20 and 40 cm) of gley floodplain soil (Calcaric Gleyic Pantofluvic Fluvisol) in the Igdır region (Eastern Turkey) were carried out using Elitech RC-4 sensors during the summer season. Using the obtained data, various methods were used to calculate the thermophysical properties of the soil – thermal conductivity, thermal diffusivity, attenuation depth, heat transfer, and heat flux. Based on statistical criteria, it has been proven that the proposed point model is the best one. It has been established that for the studied soil, the thermal diffusivity is Ƙ = 1.1035 × 10⁻⁶ m²/s, thermal conductivity λ = 1.7612 W/(m °C), damping depth d = 17.42 cm, and thermal effusivity e = 27.9431 Wh0.5/m² °C. In addition, in accordance with the model obtained, it was determined that the largest heat flux on the soil surface occurs at 12:00 pm (q = 106.85 W/m²), and the lowest heat flux occurs at 03:00 am (q = –64.62 W/m²).

Full Text

Restricted Access

About the authors

R. Mikail

Igdir University

Email: fariz.mikailsoy@igdir.edu.tr

Department of Mathematics

Turkey, Igdır, 76000

E. Hazar

Igdir University

Email: fariz.mikailsoy@igdir.edu.tr

Department of Mathematics

Turkey, Igdır, 76000

E. Shein

LomonosovMoscow State University

Email: fariz.mikailsoy@igdir.edu.tr
Russian Federation, Moscow, 119991

F. Mikailsoy

Igdir University

Author for correspondence.
Email: fariz.mikailsoy@igdir.edu.tr

Department of Mathematics

Turkey, Igdır, 76000

References

  1. Болотов А.Г. Метод определения температуропроводности почвы // Вестник АГАУ. 2015. № 7. C. 74–79.
  2. Каганов М.А., Чудновский А.Ф. Об определении коэффициента теплопроводности почв // Изв. АН СССР. География. 1953. № 2. С. 183–191.
  3. Карслоу Г., Егер Д. Теплопроводность твердых тел. М.: Наука, 1964. 486 с.
  4. Колмогоров А.Н. К вопросу об определении коэффициента температуропроводности почвы // Изв. АН СССР. География и геофизика. 1950. № 2. С. 97–99.
  5. Куртенер Д.А., Решетин О.Л. Об одном решении уравнения теплопроводности в связи с расчетом температуры почвы // Теплообмен в открытом и защищенном грунте. Л.: Гидрометеоиздат, 1970. С. 38–45.
  6. Микайылoв Ф.Д., Шеин Е.В. Граничные условия при моделировании переноса тепла в почве // Агрофизика. 2014. № 4. С. 1–6.
  7. Нерпин С.В., Чудновский А.Ф. Физика почв. М.: Наука, 1967. 650 с.
  8. Тихонов А.Н., Самарский А.А. Уравнение математической физики. М.: Наука, 1966. 724 с.
  9. Цейтин Г.Х. О вычислении коэффициента температуропроводности и потока тепла в почву по осредненным температурам // Тр. ГГО. 1956. Вып. 60. С. 67–80.
  10. Шеин Е.В. Курс физики почв. М.: Изд-во МГУ, 2005. 432 с.
  11. Anonymous. Turkish State Meteorological Service. Igdir, 2020.
  12. An K., Wang W., Zhao Y., Huang W., Chen L., Zhang Z., Wang Q., Li W. Estimation from soil temperature of soil thermal diffusivity and heat flux in sub-surface layers // Bound. Layer Meteor. 2016. V. 158. P. 473–488. https://doi.org/10.1007/s10546-15-0096-7
  13. Black C.A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Properties. American Society of Agronomy and Soil Science Society of America, Madison. 1965. № 9. Р. 374–390.
  14. Blake G.R., Hartge K.H. Bulk density. In: Methods of Soil Analysis. Part I, Physical and Mineralogical Methods, ASA and SSSA. Agronomy Monograph No: 9. Madison, Wisconsin USA. 1986. P. 363–381.
  15. Gao, Z. Determination of soil heat flux in a Tibetan short-grass prairie // Bound. Layer Meteorology. 2005. V. 114. P. 165–178. https://doi.org/10.1007/s10546-004-8661-5
  16. Gao Z., Russell E.S., Missik J.E.C., Huang M., Chen X., Strickland C.E., Clayton R., Arntzen E., Ma Y., Liu H. A novel approach to evaluate soil heat flux calculation: An analytical review of nine methods // J. Geophys. Res. Atmos. 2017. V. 122. P. 6934–6949. https://doi.org/10.1002/2017JD027160
  17. Gee G.W., Bauder J.W. Particle-size analysis. Methods of Soil Analysis. Part 1.
  18. Physical and Minerological Methods. Agronomy. 1986. V. 9. P. 383–441.
  19. Erdel E., Mikailsoy F. Determination of thermophysical properties of fluvisols in eastern turkey using various models // Eurasian Soil Science. 2022. V. 55. P. 1568–1576. https://doi.org/10.1134/S1064229322110047
  20. Heitman J.L., Horton R., Sauer T.J., Ren T., Xiao X. Latent heat in soil heat flux measurements // Agricultural and Forest Meteorology. 2010. V. 150. P. 1147–1153. https://doi.org/10.1016/j.agrformet.2010.04.017
  21. Horton R. Jr. Determination and use of soil thermal properties near the soil surface. Ph.D. New Mexico State University, Las Cruces, New Mexico, USA. 1982. 132 p. https://www.proquest.com/docview/ 303249135?pq-origsite=gscholar&fromopenview=true
  22. Mikail R., Hazar E., Farajzadeh A., Erdel E., Mikailsoy F. A comparison of six methods used to evaluate apparent thermal diffusivity for soils // Mathem. Anal. and Convex Optim. 2021. V. 2. P. 51–61. https://doi.org/10.29252/maco.2.1.5
  23. Mikailsoy F.D. On the influence of boundary conditions in modeling heat transfer in soil // J. Engineer. Phys. Thermophys. 2017. V. 90. Р. 67–79. https://doi.org/10.1007/s10891-017-1540-y
  24. Mikayilov F.D. and Shein E.V. Theoretical principles of experimental methods for determining the thermal diffusivity of soils // Eurasian Soil Science. 2010. V. 43. P. 556–564. https://doi.org/10.1134/S1064229310050091
  25. Walkley A., Black L.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method // Soil Science. 1934. V. 37. P. 29–38. https://doi.org/10.1097/00010694-193401000-00003
  26. Sauer T.J., Horton R. Soil heat flux // Micrometeorology in agricultural systems // Agron. Monogr. Madison. 2005. V. 47. P. 131–54. https://doi.org/10.2134/agronmonogr47.c7 https://www.elitechlog.com/wp-content/manuals/RC-4-RC-4HA-RC-4HC-instructions.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (129KB)
3. Fig.2

Download (141KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies