Carbon Dioxide in Soil and Surface Waters in the North of Western Siberia: Methodological Approach and Quantitative

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Dissolved inorganic carbon is an essential component of the carbon cycle, especially in the northern regions, while its loss through water bodies is still rarely included in regional carbon models. The tasks of the work included a detailed coverage of the methodological approach “headspace equilibration” to the study of the concentration of dissolved CO₂in soil and surface waters, as well as the assessment of the range of CO₂concentrations in waters of different genesis in the landscapes of the north of Western Siberia. As a result of the methodological work done, a protocol was developed and presented for measuring the concentration of CO₂in waters by the “headspace equilibration” method with detailed calculations. The concentration of CO₂ in soil (supra-permafrost) and surface waters (river, bog, lake, etc.) ranged from 13 to 2983 µmol/l (274 to 57000 µatm), the vast majority of objects were supersaturated with CO₂ relative to the atmosphere. The maximum values of concentrations are characterized by supra-permafrost soil and bog waters; the minimum is the waters of aquatic ecosystems: thermokarst and forest lakes. The high variability of CO₂concentration in waters necessitates a large number of measurements to obtain adequate estimates.

Full Text

Restricted Access

About the authors

O. Yu. Goncharova

Lomonosov Moscow State University

Author for correspondence.
Email: goncholgaj@gmail.com
Russian Federation, Moscow, 119991

M. V. Timofeeva

Lomonosov Moscow State University; Dokuchaev Soil Science Institute

Email: goncholgaj@gmail.com
Russian Federation, Moscow, 119991; Moscow, 119017

G. V. Matyshak

Lomonosov Moscow State University

Email: goncholgaj@gmail.com
Russian Federation, Moscow, 119991

A. V. Isaeva

Lomonosov Moscow State University; Israel Institute of Global Climate and Ecology

Email: goncholgaj@gmail.com
Russian Federation, Moscow, 119991; Moscow, 107258

References

  1. Вадюнина А.Ф., Корчагина З.А. Методы исследования физических свойств почв. М.: Агропромиздат, 1986. 416 с.
  2. Верещагин Г.Ю. Методы полевого гидрохимического анализа в их применении к гидрологической практике. Л.: ГГИ, 1930. 135 с.
  3. Гончарова О.Ю., Тимофеева М.В., Матышак Г.В. Диоксид углерода в природных почвенных, грунтовых и поверхностных водах арктических и бореальных регионов: роль, источники, методы определения (обзор) // Почвоведение. 2023. № 3. С. 321–338. https://doi.org/10.31857/S0032180X22601025
  4. Инишева Л.Н. Закономерности функционирования болотных экосистем в условиях воздействия природных и антропогенных факторов: монография. Томск: Изд-во ТГПУ, 2020. 482 с.
  5. Ландшафты криолитозоны Западно-Сибирской нефтегазоносной провинции. Новосибирск: Наука, 1983. 165 с.
  6. Матышак Г.В., Богатырев Л.Г., Гончарова О.Ю., Бобрик А.А. Особенности развития почв гидроморфных экосистем северной тайги Западной Сибири в условиях криогенеза // Почвоведение. 2017. № 10. С. 1155–1164. https://doi.org/10.7868/S0032180X17100069
  7. Орехов П.Т. Аквальные природные комплексы северной тайги Западной Сибири // Криосфера Земли. 2010. Т. 14. № 2. С. 23–28.
  8. Пипко И.И., Пугач С.П., Савичев О.Г., Репина И.А., Шахова Н.Е., Моисеева Ю.А., Барсков К.В., Сергиенко В.И., Семилетов И.П. Динамика растворенного неорганического углерода и потоков CO₂ между водой и атмосферой в главном русле реки Обь // Доклады АН. 2019. Т. 484. № 6. С. 691–697.
  9. Понизовский А.А., Пинский Д.Л., Воробьева Л.А. Химические процессы и равновесия в почвах. М.: Изд-во Моск. ун-та, 1986. 102 с.
  10. Природные условия и естественные ресурсы СССР: Западная Сибирь. М.: Изд-во Академии Наук СССР, 1963. 490 с.
  11. Смагин А.В. Газовая фаза почв. М.: Изд-во Моск. ун-та, 2005. 301 с.
  12. Тимофеева М.В., Гончарова О.Ю., Матышак Г.В., Чуванов С.В. Потоки углерода в экосистеме торфяно-болотного комплекса криолитозоны Западной Сибири // Геосферные исследования. 2022. № 3. С. 109–125.
  13. Aufdenkampe A.K., Mayorga E., Raymond P.A., Melack J.M., Doney S.C., Alin S.R., Aalto R.E., Yoo K. Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere // Frontiers Ecology Environ. 2011. V. 9. № 1. P. 53–60. https://doi.org/10.1890/100014
  14. Billett M.F., Moore T.R. Supersaturation and evasion of CO₂and CH4 in surface waters at Mer Bleue peatland, Canada // Hydrol. Process. 2008. V. 22. № 12. P. 2044–2054. https://doi.org/10.1002/hyp.6805
  15. Cole J.J., Prairie Y.T. Dissolved CO₂// Encyclopedia of Inland Waters. Elsevier, 2009. P. 30–34. https://doi.org/10.1016/B978-012370626-3.00091-0
  16. Cole J.J., Prairie Y.T., Caraco N.F., McDowell W.H., Tranvik L.J., Striegl R.G., Duarte C.M., Kortelainen P., Downing J.A., Middelburg J.J., Melack J. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget // Ecosystems. 2007. V. 10. № 1. P. 172–185. https://doi.org/10.1007/s10021-006-9013-8
  17. Dean J.F., Meisel O.H., Martyn Rosco M., Marchesini L.B., Garnett M.H., Lenderink H., Logtestijn R. van, Borges A.V., Bouillon S., Lambert T., Röckmann T., Maximov T., Petrov R., Karsanaev S., Aerts R., Huissteden J. van, Vonk J.E., Dolman A.J. East Siberian Arctic inland waters emit mostly contemporary carbon // Nat Commun. 2020. V. 11. № 1. P. 1627. https://doi.org/10.1038/s41467-020-15511-6
  18. Grace J., Malhi Y. Carbon dioxide goes with the flow // Nature. 2002. V. 416. № 6881. P. 594–594. https://doi.org/10.1038/416594b
  19. Greenhouse gas emissions – fluxes and processes: hydroelectric reservoirs and natural environments. Berlin: Springer, 2005. 732 p.
  20. GHG measurement guidelines for freshwater reservoirs: derived from: The UNESCO/IHA Greenhouse Gas Emissions from Freshwater Reservoirs Research Project / Ed. Goldenfum J.A. London: Intern. Hydropower Association (IHA), 2010. 138 p.
  21. Hope D., Billett M.F., Cresser M.S. A review of the export of carbon in river water: Fluxes and processes // Environ. Poll. 1994. V. 84. № 3. P. 301–324. https://doi.org/10.1016/0269–7491(94)90142–2
  22. Hope D., Palmer S.M., Billett M.F., Dawson J.J.C. Carbon dioxide and methane evasion from a temperate peatland stream // Limnol. Oceanogr. 2001. V. 46. № 4. P. 847–857. https://doi.org/10.4319/lo.2001.46.4.0847
  23. Hope D., Palmer S.M., Billett M.F., Dawson J.J.C. Variations in dissolved CO₂and CH4 in a first-order stream and catchment: an investigation of soil-stream linkages // Hydrological Processes. 2004. V. 18. № 17. P. 3255–3275. https://doi.org/10.1002/hyp.5657
  24. Kling G.W., Kipphut G.W., Miller M.C. The flux of CO₂and CH4 from lakes and rivers in arctic Alaska // Hydrobiologia. 1992. V. 240. № 1–3. P. 23–36. https://doi.org/10.1007/BF00013449
  25. Koschorreck M., Prairie Y.T., Kim J., Marcé R. Technical note: CO₂is not like CH4 – limits of and corrections to the headspace method to analyse pCO₂in fresh water // Biogeochemistry. Greenhouse Gases. 2020. https://doi.org/10.5194/bg-2020-307
  26. Neal C., House W., Down K. An assessment of excess carbon dioxide partial pressures in natural waters based on pH and alkalinity measurements // Sci. Total Environ. 1998. V. 210–211. P. 173–185. https://doi.org/10.1016/S0048-9697(98)00011-4
  27. Oil L., Halbedel (née Angelstein) S. Advances in the headspace equilibration technique for CO₂sampling // Protocol Exchange. 2015. P. 1–18. https://doi.org/10.1038/protex.2015.085
  28. Öquist M.G., Wallin M., Seibert J., Bishop K., Laudon H. Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream // Environ. Sci. Technol. 2009. V. 43. № 19. P. 7364–7369. https://doi.org/10.1021/es900416h
  29. Prairie Y.T., Bird D.F., Cole J.J. The summer metabolic balance in the epilimnion of southeastern Quebec lakes // Limnol. Oceanogr. 2002. V. 47. № 1. P. 316–321. https://doi.org/10.4319/lo.2002.47.1.0316
  30. Rantakari M., Kortelainen P., Vuorenmaa J., Mannio J., Forsius M. Finnish Lake Survey: the role of catchment attributes in determining nitrogen, phosphorus, and organic carbon concentrations // Water, Air, Soil Poll. Focus. 2004. V. 4. № 2/3. P. 683–699. https://doi.org/10.1023/B: WAFO.0000028387.61261.96
  31. Raudina T.V., Loiko S.V., Lim A., Manasypov R.M., Shirokova L.S., Istigechev G.I., Kuzmina D.M., Kulizhsky S.P., Vorobyev S.N., Pokrovsky O.S. Permafrost thaw and climate warming may decrease the CO2, carbon, and metal concentration in peat soil waters of the Western Siberia Lowland // Sci. Total Environ. 2018. V. 634. P. 1004–1023. https://doi.org/10.1016/j.scitotenv.2018.04.059
  32. Repo M.E., Huttunen J.T., Naumov A.V., Chichulin A.V., Lapshina E.D., Bleuten W., Martikainen P.J. Release of CO₂and CH4 from small wetland lakes in western Siberia // Tellus B.: Chem. Phys. Meteorol. 2007. V. 59. № 5. P. 788. https://doi.org/10.1111/j.1600-0889.2007.00301.x
  33. Roehm C.L., Prairie Y.T., Giorgio P.A. del. The pCO₂dynamics in lakes in the boreal region of northern Québec, Canada: LAKE pCO₂dynamics in Boreal Lakes // Global Biogeochem. Cycles. 2009. V. 23. № 3. https://doi.org/10.1029/2008GB003297
  34. Shirokova L.S., Pokrovsky O.S., Kirpotin S.N., Desmukh C., Pokrovsky B.G., Audry S., Viers J. Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia // Biogeochemistry. 2013. V. 113. № 1–3. P. 573–593. https://doi.org/10.1007/s10533-012-9790-4
  35. Striegl R.G., Dornblaser M.M., McDonald C.P., Rover J.A., Stets E.G. Carbon dioxide and methane emissions from the Yukon River system // Global Biogeochem. Cycles. 2012. V. 26. № 4. P. 2012GB004306. https://doi.org/10.1029/2012GB004306
  36. Vachon D., Sponseller R.A., Karlsson J. Integrating carbon emission, accumulation and transport in inland waters to understand their role in the global carbon cycle // Global Change Biology. 2021. V. 27. № 4. P. 719–727. https://doi.org/10.1111/gcb.15448.
  37. Wehrli B. Conduits of the carbon cycle // Nature. 2013. V. 503. № 7476. P. 346–347. https://doi.org/10.1038/503346a
  38. Weiss R.F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas // Marine Chem. 1974. V. 2. № 3. P. 203–215. https://doi.org/10.1016/0304-4203(74)90015-2
  39. Worrall F., Burt T., Adamson J. Fluxes of dissolved carbon dioxide and inorganic carbon from an upland peat catchment: implications for soil respiration // Biogeochemistry. 2005. V. 73. № 3. P. 515–539. https://doi.org/10.1007/s10533-004-1717-2
  40. Yoon T.K., Jin H., Oh N.-H., Park J.-H. Technical note: Applying equilibration systems to continuous measurements of CO₂ in inland waters // Biogeosciences. 2016. V. 13. P. 3915–3930. https://doi.org/10.5194/bg-2016-54

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (714KB)
3. Fig.2

Download (82KB)
4. Fig.3

Download (141KB)
5. Fig.4

Download (175KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies