Model of the Soil Sediment Sequence Accumulation of Ice Complex (Kolyma Lowland)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the example of an exposure at Cape Maly Chukochi, a model was developed for the accumulation of the soil-sedimentary sequence of the ice complex of the Kolyma Lowland. The distribution of the magnetic susceptibility of the sediment over the depth of the sequence is measured, which has a periodic shape. The specific magnetic susceptibility of the material at the level of (5–25) × 10⁻⁸ m3/kg is determined by the presence of fine magnetite crystals in it. The hypothesis is substantiated that the finely dispersed magnetite of the ice complex is of authigenic origin. Due to its accumulation, the magnetic susceptibility of the soil increases during the lifetime of the material in the seasonally thawed layer, and its distribution in the soil-sedimentary sequence contains information about the history of the sequence accumulation. The proposed model describes the soil-sedimentary sequence because of sediment ingress to the soil surface with a time-varying intensity of the sedimentary matter flow, which determines the dynamics of the sediment lifetime in the seasonally thawed layer and the period of magnetite accumulation in the soil. The calculated distribution of the sediment transformation degree in the sequence profile is compared with the measured distribution of magnetic susceptibility. Based on the data on the distribution of magnetic susceptibility, the model was used to reconstruct the accumulation history of the soil-sedimentary sequence.

Full Text

Restricted Access

About the authors

V. E. Ostroumov

Institute of Physicochemical and Biological Problems of Soil Science of the Russian

Author for correspondence.
Email: v.ostroumov@rambler.ru
ORCID iD: 0000-0002-6127-4203
Russian Federation, Academy of Sciences, Pushchino, 142290 Russia

References

  1. Водяницкий Ю.Н. Соединения железа и их роль в охране почв. М.: Почв. ин-т им. В.В. Докучаева, 2010. 155 с.
  2. Водяницкий Ю.Н., Мергелов Н.С., Горячкин С.В. Диагностика оглеения в условиях низкого содержания оксидов железа (на примере почв тундры Колымской низменности) // Почвоведение. 2008. № 3. С. 261–279. https://doi.org/10.1134/S1064229308030010
  3. Губин С.В., Лупачев А.В. Почвообразование в тундровой зоне приморских низменностей северо-востока Сибири // Почвоведение. 2020. № 10. C. 1182–1191. https://doi.org/10.31857/S0032180X2010008
  4. Ершов Э.Д. Криолитогенез. М.: Недра, 1982. 212 с.
  5. Конищев В.Н. Формирование состава дисперсных пород в криолитосфере. Новосибирск: Наука, 1981. 197 с.
  6. Разумная Е.Г., Ершова К.С. Методы сепарации и их применение в минералогической практике // Современные методы минералогического исследования. М.: Недра, 1969. Ч. II. C. 201–250.
  7. Ривкина Е.М., Федоров-Давыдов Д.Г., Захарюк А.Г.., Щербакова В.А., Вишнивецкая Т.А. Свободное железо и железовосстанавливающие микроорганизмы в почвах и многолетнемерзлых отложениях северо-востока Сибири // Почвоведение. 2020. № 10. С. 1247–1261. https://doi.org/10.31857/S0032180X20100160
  8. Романовский Н.Н. Формирование полигонально-жильных структур. Новосибирск: Наука, 1977. 216 с.
  9. Alekseev A., Alekseeva T., Ostroumov V., Siegert C., Gradusov B. Mineral Transformations in Permafrost-Affected Soils, North Kolyma Lowland, Russia // Soil Sci. Soc. Am. J. 2003. V. 67. P. 596–605. https://doi.org/10.2136/sssaj2003.0596
  10. Baker Ch.C.M., Barker.A.J., Douglas T.A., Doherty S.J., Barbato R. Seasonal variation in near-surface seasonally thawed active layer and permafrost soil microbial communities // Environ. Res. Lett. 2023. V. 18. P. 055001. https://doi.org/10.1088/1748-9326/acc542
  11. Kanevskiy M., Shur Y., Fortier D., Jorgenson M.T., Stephani E. Cryostratigraphy of Late Pleistocene Syngenetic Permafrost (Yedoma) in Northern Alaska, Itkillik River Exposure // Quat. Res. 2011. V. 75. P. 584–596. https://doi.org/10.1016/j.yqres.2010.12.003
  12. Konishchev V. The Nature of Cyclic Structure of the Ice Complex, East Siberia // Geogr. Environ. Sustain. 2013. V. 6. P. 4–20. https://doi.org/10.24057/2071-9388-2013-6-3-4-20
  13. Konishchev V.N., Rogov V.V. Investigations of Cryogenic Weathering in Europe and Northern Asia // Permafrost Periglacial Process. 1993. V. 4. P. 49–64. https://doi.org/10.1002/ppp.3430040105
  14. Murton J.B., Goslar T., Edwards M.E., Bateman M.D., Danilov P.P., Savvinov G.N. et al. Palaeoenvironmental Interpretation of Yedoma Silt (Ice Complex) Deposition as Cold-Climate Loess, Duvanny Yar, Northeast Siberia // Permafrost Periglac. Process. 2015. V. 26. P. 208–288. https://doi.org/10.1002/ppp.1843
  15. Patzner M.S., Kainz N., Lundin E., Barczok M., Smith Ch., Herndon E., Kinsman-Costello L., Fischer S., Straub D., Kleindienst S., Kappler A., Bryce C. Seasonal Fluctuations in Iron Cycling in Thawing Permafrost Peatlands // Environ. Sci. Technol. 2022. V. 56. P. 4620–463. hpttps://doi.org/10.1021/acs.est.1c06937
  16. Schirrmeister L., Dietze E., Matthes H., Grosse G., Strauss J., Laboor S., Ulrich M., Kienast F., Wetterich S. The Genesis of Yedoma Ice Complex Permafrost – Grain-Size Endmember Modeling Analysis from Siberia and Alaska // E&g Quat. Sci. J. 2020. V. 69. P. 33–53. https://doi.org/10.5194/egqsj-69-33-2020
  17. Schirrmeister L., Fedorov A.N., Froese D., Iwahana G., van Huissteden K., Veremeeva A. Yedoma Permafrost Landcapes as past Archives, Present and Future Change Areas // Frontiers in Earth Science. 2022. V. 10. https://doi.org/10.3389/feart.2022.929873
  18. Schirrmeister L., Kunitsky V.V., Grosse G., Wetterich S., Meyer H., Schwamborn G., Babiy O., Derevyagin A., Siegert C. Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on North-East Siberian Arctic coastal lowlands and islands – A review // Quaternary International. 2011. V. 241. P. 3–25. https://doi.org/10.1016/j.quaint.2010.04.004
  19. Schirrmeister L., Wetterich S., Schwamborn G., Matthes H., Grosse G., Klimova I., Kunitsky V.V., Siegert C. Heavy and light mineral associations of late Quaternary permafrost deposits in Northeastern Siberia // Front. Earth Sci. 2022. V. 10. P. 741932. https://doi.org/10.3389/feart.2022.741932
  20. Schwamborn G., Schirrmeister L., Mohammadi A., Meier H., Kartosiia A., Maggioni F., Strauss J. Fluvial and permafrost history of the lower Lena River, north-eastern Siberia, over late Quaternary time // Sedimentology. 2023. V. 70. P. 235–258. https://doi.org/10.1111/sed.13037
  21. Shmelev D., Cherbunina M., Rogov V., Opfergelt S., Monhonval A., Strauss J. Reconstructing permafrost sedimentological characteristics and post-depositional processes of the Yedoma Stratotype Duvanny Yar, Siberia // Frontiers in Earth Science. 2021. V. 9. P. 727315. https://doi.org/10.3389/feart.2021.727315
  22. Strauss J., Schirrmeister L., Wetterich S., Borchers A., Davydov S.P. Grain-size properties and organic-carbon stock of yedoma ice complex permafrost from the Kolyma lowland, Northeastern Siberia // Glob. Biogeochem. Cycles. 2012. V. 26. P. GB3003. https://doi.org/10.1029/2011GB004104
  23. Wetterich S., Tumskoy V., Rudaya N., Andreev A., Opel T., Meyer H., Schirrmeister L., Hüls M. Ice Complex formation in arctic East Siberia during the MIS3 Interstadial // Quat. Sci. Rev. 2014. V. 84. P. 39–55. https://doi.org/10.1016/j.quascirev.2013.11.009
  24. Winklhofer M., Petersen N. Paleomagnetism and Magnetic Bacteria // Magnetoreception and Magnetosomes in Bacteria / Eds. Schüler D. Springer-Verlag, 2006. P. 256–273. https://doi.org/10.1007/7171

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (113KB)
3. Fig.2

Download (110KB)
4. Fig.3

Download (267KB)
5. Fig.4

Download (126KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies