Mineralogy and Magnetic Properties of the Loess-Soil Formation Due to Changes in Landscape and Climatic Conditions in the Terek-Kuma Lowland in the Pleistocene


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A detailed mineralogical and geochemical study of the reference section “Otkaznoye”, representing a loess-soil complex confined to the Tersko-Kuma Plain, was carried out. The section provides a detailed record of the history of the development of the region in the Pleistocene. The thickness of the deposits reaches up to –140 m, and the age can exceed 800 thousand years. One of the main tasks of the work was to demonstrate the capabilities of a set of methods of environmental magnetism in combination with Mössbauer spectroscopy, mineralogical and geochemical methods for carrying out paleogeographic reconstructions of the natural environment and sedimentation conditions in the Pleistocene. Changes in the main magnetic properties for the Otkaznoe section were found, indicating with a high sensitivity of iron mineralogy in conection to climatic conditions during soil formation and sedimentation. The soil horizons are characterized by an increased content of ferrimagnets. There is a significant increase in the ferrimagnetic contribution in paleosol horizons (PS), where it reaches 80% of the total magnetic susceptibility compared to loess horizons, where its share is 5060%. The distribution of clay minerals over the depth of the studied section makes it possible to distinguish up to six levels of development of paleosols. The degree of manifestation of changes in the mineral composition in them is different. An important point is the presence of chlorites in the paleosol horizons, which can probably be explained by the erosion of the most weathered top of the PS. A noticeable increase in the content of the smectite phase in the PS horizons indicates a sufficient duration of soil formation. The results obtained on the change in magnetic and clay mineralogy quite clearly fix the paleosol horizons, but two interstadials are also distinguished – the Mikulin (MIS5) and the Dnieper (MIS6) (probably weakly pronounced Bryansk paleosol), which confirms the stratigraphic constructions. ased on the obtained set of magnetic and mineralogical, and geochemical parameters for the soil-loess complexes of the territory of the Terek-Kuma Plain, the dynamics of climatic conditions in the Pleistocene is quantitatively reconstructed and the trend of gradual climate aridization during the Pleistocene is confirmed. The epochs of interglacials, when soil complexes were formed, were characterized by an increased, compared to the stages of glaciations, climate humidity with a maximum aridity index IDM -35 (annual precipitation up to 700 mm) characteristic of the Inzhava pedocomplex (PS4).

Full Text

Restricted Access

About the authors

A. О. Alekseev

Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences

Author for correspondence.
Email: alekseev@issp.psn.ru
ORCID iD: 0000-0001-5158-4454
Russian Federation, Pushchino, 142290

T. V. Alekseeva

Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences

Email: alekseev@issp.psn.ru
ORCID iD: 0000-0002-3880-2573
Russian Federation, Pushchino, 142290

References

  1. Алексеев А.О., Алексеева Т.В., Махер Б.A. Магнитные свойства и минералогия соединений железа степных почв // Почвоведение. 2003. № 1. С. 62–74.
  2. Алексеев А.О., Алексеева Т.В. Оксидогенез железа в почвах степной зоны. М.: ГЕОС, 2012. 204 с.
  3. Алексеев А.О., Калинин П.И., Алексеева Т.В. Почвенные индикаторы параметров палеоэкологических условий на юге восточно-европейской равнины в четвертичное время // Почвоведение. 2019. № 4. С. 389–399.
  4. Алексеева Т.В., Алексеев А.О., Демкин В.А., Алексеева В.А., Соколовска З., Хайнос М., Калинин П.И. Физико-химические и минералогические признаки солонцового процесса в почвах нижнего Поволжья в позднем голоцене // Почвоведение. 2010. № 10. С. 1171–1189.
  5. Бабанин В.Ф., Трухин В.И., Карпачевский Л.О., Иванов А.В., Морозов В.В. Магнетизм почв. Ярославль–М.: Изд-во ЯГТУ, 1995. 219 c.
  6. Балаев Л.Г., Царев П.В. Лёссовые породы Центрального и Восточного Предкавказья. М.: Наука, 1964. 248 с.
  7. Болиховская Н.С. Эволюция лёссово-почвенной формации Северной Евразии. М.: Изд-во МГУ, 1995. 270 с.
  8. Болиховская Н.С., Маркова А.К., Фаустов С.С. Изменения ландшафтно-климатических условий в Терско-Кумской низменности в плейстоцене // Вестник Моск. ун-та. Сер. 5, География. 2015. № 1. C. 55–70.
  9. Величко А.А., Морозова Т.Д. Основные горизонты лёссов и ископаемых почв Русской равнины // Лёссы, погребенные почвы и криогенные явления на Русской равнине. М.: Наука, 1972. С. 5–25.
  10. Величко А.А., Маркова А.К., Морозова Т.Д., Ударцев В.П. Методы абсолютной и относительной геохронологии в лёссово-почвенной стратиграфии и ее корреляция с ритмикой донных осадков океана // Новые данные по геохронологии четвертичного периода. М.: Наука, 1987. С. 23–31.
  11. Величко А.А., Маркова А.К., Морозова Т.Д., Нечаев В.П., Светлицкая Т.В., Цацкин А.И., Чичагова О.А. Геохронология лёссово-почвенной формации юго-запада Русской равнины по новым данным // Геохронология четвертичного периода. М.: Наука, 1992. С. 28–33.
  12. Величко А.А. Изменение климата и ландшафтов за последние 65 миллионов лет. – М.: ГЕОС, 1999. 260 с.
  13. Величко А.А., Янг Т., Алексеев А.О., Борисова О.К., Калинин П.И., Конищев В.Н., Кононов Ю.М., Константинов Е.А., Курбанов Р.Н., Панин П.Г., Рогов В.В., Сарана В.А., Тимирева С.Н., Чубаров И.Г. Сравнительный анализ изменений условий осадконакопления за последний межледниково- едниковый макроцикл в лёссовых областях юга Восточно-Европейской равнины (Приазовье) и центрального Китая (Лёссовое плато) // Геоморфология. 2017. № 1. С. 3–18. https://doi.org/ 10.15356/0435-4281-2017-1-3-18
  14. Галай Б.Ф. Генетический и палеогеографический анализ просадочных толщ Северного Кавказа // Инж. Геология. 1989. № 3. С. 33–45.
  15. Додонов А.Е. Четвертичный период Средней Азии: стратиграфия, корреляция, палеогеография. М.: ГЕОС, 2002. 250 с.
  16. Калинин П.И., Алексеев А.О. Геохимическая характеристика лёссово-почвенных комплексов Терско-Кумской равнины и Азово-Кубанской низменности. // Почвоведение. 2011. № 12. C. 1436–1453.
  17. Морозова Т.Д. Развитие почвенного покрова Европы в позднем плейстоцене. М.: Наука, 1981. 284 c.
  18. Опорные инженерно-геологические разрезы лёссовых пород Северной Евразии / Под ред. Трофимова В.Т. М., 2008. 608 c.
  19. Соколова Т.А., Дронова Т.Я., Толпешта И.И. Глинистые минералы в почвах. Тула: Гриф и К., 2005. 336 с.
  20. Татьянченко Т.В., Алексеева Т.В. Вещественный состав разновозрастных палеопочв курганной группы “Авилов” как отражение динамики климата на территории Русской равнины во второй половине голоцена // Вестник ВГУ. Сер. Геология. 2012. № 1, С. 38–50.
  21. Татьянченко Т.В., Алексеева Т.В., Калинин П.И. Минералогический и химический составы разновозрастных подкурганных палеопочв южных Ергеней и их палеоклиматическая интерпретация // Почвоведение, 2013, № 4, С. 379–392.
  22. Трофимов В.Т., Балыкова С.Д., Болиховская Н.С. и др. Лёссовый покров Земли и его свойства. М.: Изд-во МГУ, 2001. 464 с.
  23. Alekseev A.O., Mitenko G.V., Shary P.A.. Quantitative estimates of paleoenvironmental changes in the late Holocene in the south of the east European Plain as recorded in the magnetic properties of soils // Eurasian Soil Science 2020. V. 53. P. 1677–1686.
  24. Аlekseev А.О., Shary P.A. Malyshev V.V. Magnetic susceptibility of soils as an ambiguous climate proxy for paleoclimate reconstructions // Quat. Int 2023. V. 661. P. 10–21. https://doi.org/10.1016/j.quaint.2023.04.002
  25. Alekseeva T., Alekseev A., Maher B.A., Demkin V. Late Holocene climate reconstructions for the Russian steppe, based on mineralogical and magnetic properties of buried palaeosols // Palaeogeography, Palaeoclimatology, Palaeoecology. 2007. V. 249. P. 103–127.
  26. Balsam W., Ji J., Chen J. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility // Earth Planet. Sci. Lett. 2004. V. 223. P. 335–348.
  27. Balsam W.L., Ellwood B.B., Ji J., Williams E.R., Long X., El Hassani A. Magnetic susceptibility as a proxy for rainfall: worldwide data from tropical and temperate climate // Quat. Sci. Rev. 2011. V. 30 P. 2732–2744. https://doi.org/10.1016/j.quascirev.2011.06.002
  28. Bolikhovskaya N.S., Faustov S.S., Markova A.K. Pleistocene climatic stratigraphy and environments of the Terek-Kuma Lowland (NW Caspian sea region) inferred from palynological, paleomagnetic and rodent records of the long Otkaznoye sediment sequence // Quat. Int. 2016. V. 409. P. 16–32. https://doi.org/10.1016/j.quaint.2015.09.067
  29. Dearing J.A., Livingstone I.P., Bateman M.D., White K. Paleoclimate records from OIS 8.0–5.4 recorded in loess-paleosol sequences on the Matmata Plateau, southern Tunisia, based on mineral magnetism and new luminescence dating // Quat. Int. 2001. V. 76/77. P. 43–56.
  30. De Martonne E. Aréisme et indice d’ariditè // Compt. Rend. Acad. Sci. 1926. V. 182. P. 1395–1398.
  31. Gao P., Nie J., Breecker D.O. et al. Similar magnetic enhancement mechanisms between Chinese loess and alluvial sediments from the Teruel Basin, NE Spain, and paleoclimate implications // Geophys. Res. Lett. 2022. V. 49. P. e2021GL096977.
  32. Gao X., Hao Q., Qiao Y. et al. Precipitation thresholds for iron oxides dissolution and the enhanced Eurasian aridity across the Mid-Pleistocene Transition: Evidence from loess deposits in subtropical China[J] // Global and Planetary Change. 2021. V. 204. 103580.
  33. Geiss C.E., Zanner C.W. Sediment magnetic signature of climate in modern loessic soils from the Great Plains // Quat. Int. 2007. V. 162–163. P. 97–110.
  34. Heller F., Liu T.S. Paleoclimatic and sedimentary history from magnetic susceptibility of loess in China // Geophys. Res. Let. 1986. V. 13. P. 1169–1172.
  35. Hyland E., Sheldon N.D., Van der Voo R., Badgley C., Abrajevitch A. A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions // Geol. Soc. Am. Bull. 2015. http://dx.doi.org/10.1130/B31207.1
  36. Jordanova D., Jordanova N., Updating the significance and paleoclimate implications of magnetic susceptibility of Holocene loessic soils // Geoderma. 2021.V. 391. P. 114982. https://doi.org/10.1016/j.geoderma.2021.114982.
  37. Liu Q.S., Jackson M.J., Banerjee S.K., Maher B.A., Deng C.L., Pan Y.X. et al. Mechanism of the magnetic susceptibility enhancements of the Chinese loess // J. Geophys. Res. 2004. V. 109 (B12). https://doi.org/10.1029/2004JB003249
  38. Long X., Ji J., Barron V., Torrent J. Climatic thresholds for pedogenic iron oxides under aerobic conditions: processes and their significance in paleoclimate reconstruction // Quat. Sci. Rev. 2016. V. 150. P. 264–277. https://doi.org/10.1016/j. quascirev.2016.08.031.
  39. Maher B.A., Thompson R. Paleorainfall reconstructions from pedogenic magnetic susceptibility variations in the Chinese loess and paleosols // Quaternary Research. 1995. V. 44. P. 383–391.
  40. Maher B.A. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications // Palaeogeography, Palaeoclimatology, Palaeoecology. 1998. V. 137. P. 25–54.
  41. Maher B.A., Alekseev A., Alekseeva T. Variation of soil magnetism across the Russian steppe: its significance for use of soil magnetism as a palaeorainfall proxy // Quaternary Sci. Rev. 2002. V. 21. P. 1571–1576.
  42. Maher B.A., Alekseev A., Alekseeva T., Magnetic mineralogy of soils across the Russian Steppe: climatic dependence of pedogenic magnetite formation // Palaeogeography, Palaeoclimatology, Palaeoecology. 2003. V. 201. P. 321–341.
  43. Maher B.A. The magnetic properties of Quaternary aeolian dusts and sediments, and their palaeoclimatic significance // Aeolian Research. 2011. V. 3. P. 87–144.
  44. Maxbauer D.P., Feinberg J.M., Fox D.L. Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: a review of magnetic methods and challenges // Earth Science Rev. 2016. V. 155. P. 28–48.
  45. Mazneva E., Konstantinov E., Zakharov A., Sychev N., Tkach N., Kurbanov R., Sedaeva K., Murray A. Middle and Late Pleistocene loess of the Western Ciscaucasia: Stratigraphy, lithology and composition // Quat. Int. 2021. V. 590. P. 146–163. https://doi.org/10.1016/j.quaint.2020.11.039
  46. Murad E., Cashion J. Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization. Kluwer, 2004. 418 p.
  47. Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites // Nature. 1982. V. 299. P. 1523–1534.
  48. Song Y., Hao Q., Ge J., Zhao D., Zhang Y., Li Q., Zuo X., Lü Y., Wang P. Quantitative relationships between magnetic enhancement of modern soils and climatic variables over the Chinese Loess Plateau // Quat. Int. 2014. V. 334–335. P. 119–131.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (393KB)
3. Fig.2

Download (95KB)
4. Fig.3

Download (275KB)
5. Fig.4

Download (79KB)
6. Fig.5

Download (248KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies