Devonian Acid Sulfate Paleosol – First Finding on Central Devonian Field (Voronezh High, South Russia)


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the detail multidisciplinary study of middle Devonian (Eifelian) paleosol (PS) recently discovered on the territory of Voronezh Anteclise. The paleosol is developed from acid volcanic rock – rhyolitic tuff. The thickness of PS varies from 20 to 150 cm depending on the relief of Proterozoic basement beneath it. Tuff contains the inclusions of allochthonous coal particles, most part of each is substituted with pyrite. Main part of coal particles belongs to remnants of enigmatic biota – Nematophytes. The absence of rhizoliths and the microstructure of plant debris allowed to presume that PS was developed under primitive rootless vegetation. The paleosol formation is the result of predominantly chemical weathering. Its development was initiated by pyrite oxidation. PS demonstrates the following complex of pedological signs: kaolinite clay formation and redistribution, tongue bottom, Fe mobility, formation of Fe and gypsum containing nodules, in situ formation of kaolinite, gypsum, Fe-oxides, Fe-sulphates. Based on analytical data the discovered PS is attributed to acid sulphate soil. Deep transformation of parent rocks had the localized character and was not accompanied by formation of distinct soil horizons.

Full Text

Restricted Access

About the authors

T. V. Alekseeva

Institute of Physical Chemical and Biological Problems of Soil Science of the Russian Academy of Sciences

Author for correspondence.
Email: alekseeva@issp.serpukhov.su
ORCID iD: 0000-0002-3880-2573
Russian Federation, Pushchino Moscow region, 142292

A. O. Alekseev

Institute of Physical Chemical and Biological Problems of Soil Science of the Russian Academy of Sciences

Email: alekseeva@issp.serpukhov.su
Russian Federation, Pushchino Moscow region, 142292

References

  1. Алексеева Т.В. Почвы девона и карбона. Современное состояние исследований в России (обзор литературы) // Почвоведение. 2020. № 10. С. 1157–1169.
  2. Алексеева Т.В. Почвообразование и почвы в девоне и карбоне на территории Северной Евразии: строение, типы, биота, палеоклиматические архивы и стратиграфическая значимость. Дис. … д. г.-м. н. М., 2020.
  3. Астафьева М.М., Розанов А.Ю., Хувер Р. Фрамбоиды: их структура и происхождение // Палеонтологический журнал. 2005. № 5. С. 3–9.
  4. Гоманьков А.В. Orestovia-подобные растения из девона России: морфология и таксономическое положение // Lethaea Rossica. 2019. Т. 18. C. 16–31.
  5. Горячкин С.В. География экстремальных почв и почвоподобных систем // Вестник РАН. 2022. Т. 92. № 6. C. 564–571.
  6. Ищенко Т.А., Ищенко А.А. Среднедевонская флора Воронежской антеклизы. Киев: Наукова Думка, 1981. 112 с.
  7. Красильников П.В., Сафонова В.М., Седов С.Н. Сульфатнокислое выветривание в почвах Северной Карелии // Почвоведение. 1995. № 6. С. 740–746.
  8. Розанов А.Ю., Астафьева М.М. Празинофиты (зеленые водоросли) из нижнего протерозоя Кольского полуострова // Палеонтологический журнал. 2008. № 4. C. 90–93.
  9. Савко А.Д. Геология Воронежской антеклизы // Тр. науч.-исслед. ин-та геологии Воронежского гос. ун-та. 2002. Вып. 12. 165 с.
  10. Синицин В.М. Древние климаты Евразии. Ч. 3. Вторая половина Палеозоя (девон, карбон, пермь). Л.: Изд-во Ленингр. ун-та, 1970. 131 с.
  11. Таргульян В.О., Мергелов Н.С., Горячкин С.В. Почвоподобные тела на Марсе // Почвоведение. 2017. № 2. C. 205–218.
  12. Alekseeva T.V., Alekseev A.O., Mitenko G.V. A paleosol on a Pre-Cambrian ferruginous quartzite weathering crust (Stary Oskol, Belgorod Region, Russia) // Paleontological J. 2021. V.55. P. 1476–1490.
  13. Alekseeva T., Kabanov P., Alekseev A., Kalinin P., Alekseeva V. Characteristics of early Earth`s critical zone based on Middle-Late Devonian palaeosols properties (Voronez High, Russia) // Clays and Clay Minerals. 2016. V. 64. P. 677–694.
  14. Alekseeva T., Kalinin P., Malishev V., Alekseev A.O. Sulfide oxidation as a trigger for rhyolite weathering and paleosol formation in Devonian (Voronezh High, South Russia) // Catena 2023. V. 220A. P. 106712.
  15. Andriesse W., van Mensvoort M.E.F. Acid sulfate soils, distribution and extent // Encyclopedia of Soil Science / Ed. Lal R., Marcel Dekker. 2002. 1476 p.
  16. Babechuk M.G., Widdowson M., Kamber B.S. Quantifying chemical weathering intensity and trace element release from two contrasting basalt profiles, Deccan Traps, India // Chemical Geology. 2014. V. 363. P. 56–75.
  17. Bek J., Uhlirova M., Psenicka J., Sakala J. Preliminary results on reproductive organs and in situ spores of an early land plant Tichavekia grandis Pšenička et al. from Přídolí (upper Silurian) of the Prague Basin, Czech Republic // Palaeoworld, 2023. https://doi.org/ 10.1016/j.palwor.2023.01.014
  18. Bockheim J.G. (ed.) The Soils of Antarctica: Switzerland, Springer International Publishing, 2015. 322 p.
  19. Broushkin A.V., Gordenko N.V. Istchenkophyton filiciforme gen. et sp. nov., a new small vascular plant with thick cuticle from the Devonian of Voronezh Region (European Russia) // Paleontological J. 2009. V. 43(10). P. 1202–1216.
  20. Butler B., Rickard D. Framboidal pyrite formation via the oxidation of iron (II) monosulfide by hydrogen sulfide // Geochim. Cosmochim. Acta. 2000. V. 64. P. 2665–2672.
  21. Carter J., Viviano-Beck Ch., Loizeau D., Bishop J., Le Deit L. Orbital detection and implications of akaganeite on Mars // Icarus. 2015. V. 253. P. 296–310.
  22. De Kimpe C., Miles N. Formation of swelling clay minerals by sulfide oxidation in some metamorphic rocks and related soils of Ontario, Canada // Can. J. Soil Sci. 1992. V. 72. P. 263–270.
  23. Edwards D., Axe L. Evidence for a fungal affinity for Nematasketum, a close ally of Prototaxites // Botanical J. Linnean Soc. 2012. V. 168. P. 1–18.
  24. Fitzpatrick R.W., le Roux J., Schwertmann U. Amorphous and crystalline titanium and iron-titanium oxides in synthetic preparations, at near ambient conditions, and in soil clays // Clays and Clay Minerals. 1978. V. 26(3). P. 189–201.
  25. Honegger R. Fossil lichens from the LowerDevonian and their bacterial and fungal epi- and endobionts // Biodiversity and Ecology of fungi, lichens and mosses. Kerner von Marilaun Workshop 2015 in memory of Josef Poelt. Biosystematics and Ecology Series. V. 34. Verlag der Österreichischen Akademie der Wissenschaften, Wien, 2018. P. 547–563.
  26. Hueber F.M. Rotted wood-alga-fungus: history and life of Prototaxites Dawson 1859 // Rev. Palaeobot. Palynol. 2001. V. 116(1–2). P. 123–158.
  27. Kabanov P. Stratigraphic Unconformities: Review of the concept and examples from the Middle-Upper Paleozoic // Seismic and Sequence Stratigraphy and Integrated Stratigraphy – new insights and contributions. 2017. Ch. 6. P. 101–127.
  28. Krassilov V.A., Raskatova M.G., Istchenko A.A. A new archaeopteridaliean plant from the Devonian of Pavlovsk, U.S.S.R // Rev. Palaeobotany Palynology. 1987. V. 53. P. 163–173.
  29. Mendonca S.K.G., Moraes E.M.V., Otero X.L., Ferreira T.O., Correa M.M., Sousa J.E.S., Nascimento C.W.A., Neves L.V.M.W., Souza Junior V.S. Occurrence and pedogenesis of acid sulfate soils in northeastern Brazil // Catena. 2021. V. 196. 104937.
  30. Miall A.D. The valuation of unconformities // Earth-Science Rev. 2016. V. 163. P. 22–71.
  31. Moessbauer spectroscopy / Eds. Yoshida Y., Langouche G., Springer, 2013. 317 p.
  32. Murad E., Cashion J. Mössbauer Spectroscopy of Environmental Materials and their Industrial Utilization. Kluwer, 2004. 418 p.
  33. Nabhan S., Luber T., Scheffler F., Heubeck C. Climatic and geochemical implications of Archean pedogenic gypsum in the Moodies Group (~3.2 Ga), Barberton Greenstone Belt, South Africa // Precambrian Res. 2016. V. 275. P. 119–134.
  34. Nelsen M.P., Boyce C.K. What to do with Prototaxites? // Int. J. Plant Sci. 2022. V. 183(6). P. 556–565.
  35. Retallack G.J. Paleosols and paleoenvironments of early Mars // Geology. 2014. V. 42(9). P. 755–758.
  36. Retallack G.J. The oldest known paleosol profiles on Earth: 3.46 Ga Panorama Formation, Western Australia // Palaeogeography, Palaeoclimatology, Palaeoecology. 2018. V. 489. P. 230–248.
  37. Retallack G.J. Ordovician-Devonian lichen canopies before evolution of woody trees // Gondwana Research. 2022. V. 106. P. 211–223.
  38. Retallack G.J. Soil salt and microbiome diversification over the past 3700 million years // Palaeogeography, Palaeoclimatology, Palaeoecology. 2022. V. 598. P. 111016.
  39. Retallack G.J., Jepson S., Broz A. Petrogypsic paleosols on Mars // Icarus 2023. V. 394. P. 115436.
  40. Retallack G.J., Noffke N. Are there ancient soils in the 3.7 Ga Isua Greenstone Belt, Greenland? // Palaeogeography, Palaeoclimatology, Palaeoecology. 2019. V. 514. P. 18–30.
  41. Rubinstein C.V., Vajda V. Baltica cradle of early land plants? Oldest record of trilete spores and diverse cryptospore assemblages; evidence from Ordovician successions of Sweden // GFF. 2019. V. 141(3). P. 181–190.
  42. Scotese C.R. Atlas of Earth History. Part 1. Paleogeography: PALEOMAP Project, Arlington. Texas, 2001. 52 p.
  43. Taylor T.N., Taylor E.L., Krings M. Paleobotany and the evolution of plants. Academic Press, 2009. 1253 p.
  44. Wellman C.H., Cascales-Miñana B., Servais T. Terrestrialization in the Ordovician // Geological Society. 2022. V. 532(1). P. 171–190.
  45. Wilson B.P. Elevations of sulfurous layers in acid sulfate soils: What do they indicate about sea levels during the Holocene in eastern Australia? // Catena. 2005. V. 62. P. 45–56.
  46. Zazovskaya E.P., Fedorov-Davydov D.G., Alekseeva T.V., Dergacheva M.I. Soils of Queen Maud Land // The Soils of Antarctica. Berlin: Springer, 2015. P. 21–44.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig.1

Download (1MB)
3. Fig.2

Download (307KB)
4. Fig.3

Download (1MB)
5. Fig.4

Download (173KB)
6. Fig.5

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies