Cyanobacteria in Hypolithic Horizons of Soils in the Larsemann Hills, East Antarctica

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The research is devoted to the analysis of biodiversity of Antarctic soil cyanobacteria in hypolithic organo-accumulative horizons of the Larsemann Hills (East Antarctica). Studying of fouling glasses by the methods of light and confocal microscopy, as well as fluorescent in situ hybridization, has shown that filamentous forms predominate among cyanobacteria in the upper layers of Antarctic hypolithic microbial communities. To clarify the taxonomic status, strains of the genera Nostoc, Halotia, Leptolyngbya, Plectolyngbya, Phormidesmis, as well as some new and previously undescribed representatives of Antarctic cyanobacteria were isolated from corresponding soil samples. The strains of the unique collection of soil cyanobacteria that we formed for the first time were described according to modern methods of polyphasic taxonomy based on analysis of the complex of morphological and molecular-genetic characters. The results of phylogenetic analysis of the primary sequence of 16S rRNA gene and peculiarities of organization of secondary structures of internal transcribed spacers of ribosomal operon allowed to identify new taxa of potentially endemic cyanobacteria among the studied strains. The high level of similarity of 16S rRNA gene sequences of soil cyanobacteria with those previously detected in the water bodies of the Larsemann Hills confirms their ability to spread beyond the limits of individual ecological niches and to adapt flexibly to contrasting environmental conditions.

About the authors

N. V. Velichko

Saint-Petersburg State University

Author for correspondence.
Email: n.velichko@spbu.ru
Russia, 199034, Saint Petersburg

D. E. Rabochaya

Saint-Petersburg State University

Email: n.velichko@spbu.ru
Russia, 199034, Saint Petersburg

A. V. Dolgikh

Institute of Geography of the Russian Academy of Sciences

Email: n.velichko@spbu.ru
Russia, 119017, Moscow

N. S. Mergelov

Institute of Geography of the Russian Academy of Sciences

Email: n.velichko@spbu.ru
Russia, 119017, Moscow

References

  1. Абакумов Е.В. Почвы Западной Антарктики. CПб.: Изд-во СПбГУ, 2011. 112 с.
  2. Горячкин С.В., Гиличинский Д.А., Мергелов Н.С., Конюшков Д.Е., Лупачев А.В., Абрамов А.А., Зазовская Э.П. Почвы Антарктиды: первые итоги, проблемы и перспективы исследований // Геохимия ландшафтов и география почв (к 100-летию со дня рождения М.А. Глазовской). М.: Изд-во Моск ун-та, 2012. С. 361–388.
  3. Якушев А.В., Величко Н.В., Федоров-Давыдов Д.Г., Мергелов Н.С., Лупачев А.В., Рабочая Д.Е., Белосохов А.Ф., Соина В.С. Исследование микробных сообществ почв Антарктики методом стекол обрастания // Почвоведение. 2022. № 12. С. 1514–1529. https://doi.org/10.31857/S0032180X2260069X
  4. Almela P., Justel A., Quesada A. Heterogeneity of microbial communities in soils from the Antarctic Peninsula region // Front. Microbiol. 2021. V. 12. P. 1–13. https://doi.org/10.3389/fmicb.2021.628792
  5. Alm E.W., Oerther D.B., Larsen N., Stahl D.A., Raskin L. The oligonucleotide probe database // Appl. Env. Microbiol. 1996. V. 62. P. 3557–3559. https://doi.org/10.1128/aem.62.10.3557-3559.1996
  6. Alekseev I., Zverev A., Abakumov E. Microbial communities in permafrost soils of Larsemann Hills, Eastern Antarctica: environmental controls and effect of human impact // Microorganisms. 2020. V. 8. P. 1202. https://doi.org/10.3390/microorganisms8081202
  7. Amann R.I., Fuchs B.M., Behrens S.F. The identification of microorganisms by fluorescence in situ hybridization // Curr. Op. Biotech. 2001. V. 12. P. 231–236. https://doi.org/10.1016/S0958-1669(00)00204-4
  8. Arima H., Horiguchi N., Takaichi S., Kofuji R., Ishida K., Wada K., Sakamoto T. Molecular-genetic and chemotaxonomic characterization of the terrestrial cyanobacterium Nostoc commune and its neighboring species // FEMS Microb. Ecol. 2012. V. 79. № 1. P. 34–45. https://doi.org/10.1111/j.1574-6941.2011.01195.x
  9. Blanco Y., Prieto-Ballesteros O., Gómez M.J., Moreno-Paz M., García-Villadangos M., Rodríguez-Manfredi J.A., Cruz-Gil P., Sánchez-Román M., Rivas L.A., Parro V. Prokaryotic communities and operating metabolisms in the surface and the permafrost of Deception Island (Antarctica) // Env. Microbiol. 2012. V. 14. № 9. P. 2495–2510. https://doi.org/10.1111/j.1462-2920.2012.02767.x
  10. Barrera A., Acuña-Rodríguez I.S., Ballesteros G.I., Atala C., Molina-Montenegro M.A. Biological soil crusts as ecosystem engineers in Antarctic ecosystem // Front. Microbiol. 2022. V. 13. P. 755014. https://doi.org/10.3389/fmicb.2022.755014
  11. Barrett J.E., Virginia R.A., Wall D.H., Cary S.C., Adams B.J., Hacker A.L., Aislabie J.M. Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica // Ant. Sci. 2006. V. 18. P. 535–548. https://doi.org/10.1017/S0954102006000587
  12. Bellaousov S., Castrogiovanni J., Seetin M., Mathews D. RNAstructure: Web servers for RNA secondary structure prediction and analysis // Nucleic Acids Research. 2013. V. 41. W1. P. 471–474. https://doi.org/10.1093/nar/gkt290
  13. Bockheim J.G. Soil-forming factors in Antarctica // The soils of Antarctica. Heidelberg, Springer, 2015. P. 5–20. https://doi.org/10.1007/978-3-319-05497-1
  14. Bottos E.M., Scarrow J.W., Archer S.D.J., McDonald I.R., Cary S.C. Bacterial community structures of Antarctic soils // Antarctic terrestrial microbiology. Berlin-Heidelberg, Springer, 2014. P. 9–33. https://doi.org/10.1007/978-3-642-45213-0_2
  15. Castenholz R.W. Phylum BX. Cyanobacteria // Bergey’s Manual of Systematic Bacteriology. N.Y.: Springer-Verlag, 2001. V. 1. P. 473–599. https://doi.org/10.1007/978-0-387-21609-6_27
  16. Chrismas N.A.M., Anesio A.M., Sanchez-Baracaldo P. Multiple adaptations to polar and alpine environments within cyanobacteria: a phylogenomic and Bayesian approach // Front. Microbiol. 2015. V. 6. P. 1070. https://doi.org/10.3389/fmicb.2015.01070
  17. Cowan D.A., Sohm J.A., Makhalanyane T.P., Capone D.G., Green T.G., Cary S.C., Tuffin I.M. Hypolithic communities: important nitrogen sources in Antarctic desert soils // Env. Microbiol. Rep. 2011. V. 3. P. 581–586. https://doi.org/10.1111/j.1758-2229.2011.00266.x
  18. De los Ríos A., Cary C., Cowan D. The spatial structures of hypolithic communities in the Dry Valleys of East Antarctica // Polar Biol. 2014. V. 37. № 12. P. 1823–1833. https://doi.org/10.1007/s00300-014-1564-0
  19. González Garraza G., Mataloni G., Fermani P., Vinocur A. Ecology of algal communities of different soil types from Cierva Point, Antarctic Peninsula // Polar Biol. 2011. V. 34. P. 339–351. https://doi.org/10.1007/s00300-010-0887-8
  20. Greuter D., Loy A., Horn M., Rattei T. ProbeBase – an online resource for rRNA-targeted oligonucleotide probes and primers: new features // Nuc. Acids Res. 2016. V. 44. P. 586–589. https://doi.org/10.1093/nar/gkv1232
  21. Hauer T., Komárek J. CyanoDB 2.0 – Online database of cyanobacterial genera. World-wide electronic publication // Univ. South Bohemia and Instit. of Botany AS CR. 2022. http://www.cyanodb.cz
  22. Hong J.W., Kim S.H., Choi H.-G., Kang S.-H., Yoon H.-S. Isolation and description of a globally distributed cryosphere cyanobacterium from Antarctica // Polar. Res. 2013. V. 32. P. 18529. https://doi.org/10.3402/polar.v32i0.18529
  23. Iteman I., Rippka R., Tandeau de Marsac N., Herdman M. Comparison of conserved structural and regulatory domains within divergent 16S rRNA spacer sequences of Cyanobacteria // Microbiology. 2000. V. 146. P. 1275–1286. https://doi.org/10.1099/00221287-146-6-1275
  24. IUSS Working Group WRB. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, 2015.
  25. Johansen J.R., Kovacik L., Casamatta D.A. et al. Utility of 16S−23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria) // Nova Hedw. 2011. V. 92. P. 283–302. https://doi.org/10.1127/0029-5035/2011/0092-0283
  26. Kaštovský J., Hauer T., Komárek J. Cyanobacteria on rock surfaces // Life at Rock Surfaces. 2021. P. 87–140. https://doi.org/10.1515/9783110646467
  27. Kim M., Oh H.S., Park S.C., Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes // Int. J. Syst. Evol. Microbiol. 2014. V. 64. P. 346–351. https://doi.org/10.1099/ijs.0.059774-0
  28. Komárek J., Anagnostidis K. Cyanoprokaryota 1. Teil. 1st Part: Chroococcales // Susswasserflora von Mitteleuropa 19/2. Heidelberg: Elsevier/Spektrum, 1998. 548 p.
  29. Komárek J., Anagnostidis K. Cyanoprokaryota 2. Tei l. 2nd Part: Oscillatoriales // Susswasserflora von Mitteleuropa 19/2. Heidelberg: Elsevier/Spektrum, 2005. 759 p.
  30. Komárek J. Cyanoprokaryota 3. Teil. 3rd Part: Heterocytous Genera // Susswasserflora von Mitteleuropa 19/2. Heidelberg: Elsevier/Spektrum, 2013. 1130 p.
  31. Komárek J., Kaštovskyỳ J., Mareš J., Johansen J.R. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach // Preslia. 2014. V. 86. P. 295–335.
  32. Komárek J., Genuário D., Fiore M., Fiore J. Heterocytous cyanobacteria of the Ulu Peninsula, James Ross Island, Antarctica // Polar Biol. 2014. V. 38. № 4. P. 475–492
  33. Komárek J. About endemism of cyanobacteria in freshwater habitats of maritime Antarctica // Algol. Stud. 2015. V. 148. P. 15–32. https://doi.org/10.1127/algol_stud/2015/0219eschweizerbart
  34. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35. № 6. P. 1547–1549.https://doi.org/10.1093/molbev
  35. Lacap D.C., Warren-Rhodes K.A., McKay C.P., Pointing S.B. Cyanobacteria and chloroflexi-dominated hypolithic colonization of quartz at the hyper-arid core of the Atacama Desert, Chile // Extremophiles. 2011. V. 15. P. 31–38. https://doi.org/10.1007/s00792-010-0334-3
  36. Lambrechts S., Willems A., Tahon G. Uncovering the uncultivated majority in Antarctic soils: toward a synergistic approach // Front. Microbiol. 2019. V. 10. P. 10. https://doi.org/10.3389/fmicb.2019.00242
  37. Loy A., Horn M., Wagner M. ProbeBase: an online resource for rRNA-targeted oligonucleotide probes // Nuc. Acids Res. 2003. V. 31. № 1. P. 514–516. https://doi.org/10.1093/nar/gkg016
  38. Lysak V., Maksimova I., Nikitin D., Ivanova E., Kudinova A., Soina E., Maefenina O. Soil microbial communities of Eastern Antarctica // Mos. Univ. Biol. Sci. Bull. 2018. V. 73. P. 104–112. https://doi.org/10.3103/S0096392518030124
  39. Mehda S., Muñoz-Martín M.Á., Oustani M., Hamdi-Aïssa B., Perona E., Mateo P. Lithic cyanobacterial communities in the polyextreme Sahara Desert: implications for the search for the limits of life // Env. Microbiol. 2021. V. 24. P. 451–474. https://doi.org/10.1111/1462-2920.15850
  40. Mergelov N.S. Soils of wet valleys in the Larsemann Hills and Vestfold Hills oases (Princess Elizabeth Land, East Antarctica) // Eurasian Soil Sci. 2014. V. 47. P. 845–862. https://doi.org/10.1134/S1064229314090099
  41. Mergelov N.S., Dolgikh A.V., Shorkunov I.G., Zazovskaya E.P., Soina V.S., Yakushev A.V., Fedorov-Davydov D.G., Pryakhin S., Dobryansky A.S. Hypolithic communities shape soils and organic matter reservoirs in the ice-free landscapes of East Antarctica // Sci. Rep. 2020. V. 10. P. 10277. https://doi.org/0.1038/s41598-020-67248-3
  42. Micheli C., Cianchi R., Paperi R., Belmonte A., Pushparaj B. Antarctic cyanobacteria biodiversity based on ITS and TrnL sequencing and its ecological implication // Op. J. Ecol. 2014. V. 4. P. 456–467. https://doi.org/10.4236/OJE.2014.48039
  43. Michaud A.B., Šabacká M., Priscu J.C. Cyanobacterial diversity across landscape units in a polar desert: Taylor Valley, Antarctica // FEMS Microbiol Ecol. 2012. V. 82. № 2. P. 268–278. https://doi.org/10.1111/j.1574-6941.2012.01297.x
  44. Niederberger T.D., Mcdonald I.R., Hacker A.L., Soo R.M., Barrett J.E., Wall D.H., Cary S.C. Microbial community composition in soils of Northern Victoria Land, Antarctica // Env. Microbiol. 2015. V. 10. № 7. P. 1713–1724. https://doi.org/10.1111/j.1462-2920.2008.01593.x
  45. Pandey K.D., Shukla S.P., Shukla P.N., Giri D.D., Singh J.S., Singh P., Kashyapp A.K. Cyanobacteria in Antarctica: ecology, physiology and cold adaptation // Cell. Mol. Biol. 2004. V. 50. P. 575–584. https://doi.org/19993029
  46. Pearce D.A., Newsham K.K., Thorne M.A., Calvo-Bado L., Krsek M, Laskaris P., Hodson A., Wellington E.M. Metagenomic analysis of a southern maritime Antarctic soil // Front. Microbiol. 2012. V. 3. P. 403. https://doi.org/10.3389/fmicb.2012.00403
  47. Pessi I.S., Maalouf P.D.C., Laughinghouse H.D., Baurain D., Wilmotte A. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats // J. Phycol. 2016. V. 52. P. 356–368. https://doi.org/10.1111/jpy.12399
  48. Prieto-Barajas C.M., Valencia-Canterob E., Santoyo G. Microbial mat ecosystems: structure types, functional diversity, and biotechnological application // Electr. J. Biotech. 2018. V. 31. P. 48–56. https://doi.org/10.1016/J.EJBT.2017.11.001
  49. Rego A., Raio F., Martins T., Ribeiro H., Sousa A.G.G., Séneca J., Baptista M.S., Lee C.K., Cary S.C., Ramos V., Carvalho M.F., Leão P.N., Magalhães C. Actinobacteria and cyanobacteria diversity in terrestrial Antarctic microenvironments evaluated by culture-dependent and independent methods // Front. Microbiol. 2019. V. 10. P. 1018. https://doi.org/10.3389/fmicb.2019.01018
  50. Rippka R., Deruelles J., Waterbury J.B., Herdman M., Stanier R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria // J. Gen. Microbiol. 1979. V. 111. P. 1–61. https://doi.org/10.1099/00221287-111-1-1
  51. Saitou N., Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees // Mol. Biol. Evol. 1987. V. 4. P. 406–425.
  52. Severgnini M., Canini F., Consolandi C., Camboni T., Paolo D’Acqui L., Mascalchi C., Ventura S., Zucconi L. Highly differentiated soil bacterial communities in Victoria Land macro-areas (Antarctica) // FEMS Microb. Ecol. 2021. V. 97. № 7. P. fiab087. https://doi.org/10.1093/femsec/fiab087
  53. Tamura K., Nei M., Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method // Proc. Nat. Acad. Sci. 2004. V. 101. P. 11030–11035.
  54. Taton A., Grubisic S., Ertz D., Hodgson D.A., Piccardi R., Biondi N., Tredici M.R., Mainini M., Losi D., Marinelli F., Wilmotte A. Polyphasic study of Antarctic cyanobacterial strains // J. Phycol. 2006. V. 42. P. 1257–1270. https://doi.org/10.1111/j.1529-8817.2006.00278.x
  55. Taton A., Hoffmann L., Wilmotte A. Cyanobacteria in microbial mats of Antarctic lakes (East Antarctica) – a microscopical approach // Algol. Stud./Arch. Hydrob. 2008. V. 126. P. 173–208. https://doi.org/10.1127/1864-1318/2008/0126-0173
  56. Taton A., Wilmotte A., Šmarda J., Elster J., Komárek J. Plectolyngbya hodgsonii: a novel filamentous cyanobacterium from Antarctic lakes // Polar Biol. 2011. V. 34. P. 181–191. https://doi.org/10.1007/s00300-010-0868-y
  57. Yergeau E., Newsham K.K., Pearce D.A., Kowalchuk G.A. Patterns of bacterial diversity across a range of Antarctic terrestrial habitats // Env. Microbiol. 2007. V. 9. № 11. P. 2670–2682. https://doi.org/10.1111/J.1462-2920.2007.01379.X
  58. Velichko N.V., Smirnova S.V., Averina S.G., Pinevich A.V. A survey of Antarctic cyanobacteria // Hydrobiologia. 2021. V. 848. № 11. P. 1–26. https://doi.org/10.1007/s10750-021-04588-9
  59. Vyverman W., Verleyen E., Wilmotte A., Hodgson D.A, Willems A., Peeters K., van de Vijver B., De Wever A., Leliaert F., Sabbe K. Evidence for widespread endemism among Antarctic micro-organisms // Polar Sci. 2010. V. 4. № 2. P. 103–113. https://doi.org/10.1016/j.polar.2010.03.006
  60. Wood S.A., Rueckert A., Cowan D.A., Cary S.C. Sources of edaphic cyanobacterial diversity in the Dry Valleys of Eastern Antarctica // ISME J. 2008. V. 2. № 3. P. 308–320. https://doi.org/10.1038/ismej.2007.104
  61. Wynn-Williams D.D. Response of pioneer soil microalgal colonists to environmental change in Antarctica // Microb. Ecol. 1996. V. 31. № 2. P. 177–188. https://doi.org/10.1007/BF00167863

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (4MB)
3.

Download (2MB)
4.

Download (1MB)
5.

Download (373KB)
6.

Download (1MB)

Copyright (c) 2023 Н.В. Величко, Д.Е. Рабочая, А.В. Долгих, Н.С. Мергелов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies