Respiratory Activity and Biodiversity of Microbiomes in Podzolic Soils of Post-Pyrogenic Spruce Forests in the Krasnoyarsk Territory and the Komi Republic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Data on the microbiological properties of podzolic soils (Retisols) of old-growth spruce forests in the middle taiga of the Krasnoyarsk Krai and the Komi Republic are presented. It is shown that, despite the geographical distance, the soils of the regions are characterized by similar morphological and physicochemical properties. It was noted that in the soils of the spruce forests of the European North (R. Komi) and middle Siberia (Krasnoyarsk Krai), no significant difference in the accumulation of microbial biomass and the rate of microbial respiration was found. However, the content of carbon and nitrogen in soils, as well as microbial biomass, had significant differences in the qualitative composition of microbiomes in pyrogenic and non-pyrogenic soil horizons. A significant effect of the pyrogenic factor on the α-diversity of bacteria and fungi was noted. It was shown that representatives of the dominant phyla of bacteria (Proteobacteria, Actinobacteria and Planctomycetes) and fungi (Ascomycota, Basidiomycota and Mucoromycota) actively participate in the assimilation of organic matter with the presence of pyrogenic carbon. The microbiomes of the upper pyrogenic subhorizons include groups of carbotrophic bacteria (Thermomonosporaceae, Isosphaeraceae, Bacillaceae, Xanthobacteraceae) and fungi from the classes Dothideomycetes (Cenococcum), Eurotiomycetes (Penicillium), Sordariomycetes (Trichoderma), Leotiomycetes (Oidiodendron), Umbelopsidomycetes (Umbelopsis), which are capable of converting pyrolysis products into accessible and non-toxic substrates for other organisms.

About the authors

I. D. Grodnitskaya

Sukachev Forest Institute; Siberian Federal University

Author for correspondence.
Email: igrod@ksc.krasn.ru
Russia, 660036, Krasnoyarsk; Russia, 660041, Krasnoyarsk

O. E. Pashkeeva

Sukachev Forest Institute

Email: igrod@ksc.krasn.ru
Russia, 660036, Krasnoyarsk

V. V. Startsev

Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Science

Email: igrod@ksc.krasn.ru
Russia, 167982, Syktyvkar

A. A. Dymov

Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Science; Lomonosov Moscow State University

Email: igrod@ksc.krasn.ru
Russia, 167982, Syktyvkar; Russia, 119991, Moscow

References

  1. Ананьева Н.Д. Микробиологические аспекты самоочищения и устойчивости почв. М.: Наука, 2003. 222 с.
  2. Богородская А.В., Кукавская Е.А., Каленская О.П., Буряк Л.В. Микробиологическая оценка состояния почв хвойных лесов Средней Сибири после пожаров разной интенсивности // Лесоведение. 2019. № 2. С. 138–156. https://doi.org/10.1134/S0024114819010030
  3. Воздействие пожаров на компоненты экосистемы среднетаежных сосняков Сибири. Новосибирск: Наука, 2014. 232 с.
  4. Гладков Г.В.,Чебыкина Е.Ю., Евдокимова Е.В., Иванова Е.А., Кимеклис А.К., Зверев А.О., Кичко А.А., Андронов Е.Е., Абакумов Е.В. Восстановление почвенного микробиома в различных почвенных горизонтах после верхового и низового лесных пожаров // Экологическая генетика. 2020. Т. 18. № 3. С. 343–356.
  5. Гродницкая И.Д., Карпенко Л.В., Сырцов С.Н., Прокушкин А.С. Микробиологические особенности и стратиграфия торфов двух типов болот северной части Сым-Дубчесского междуречья (Красноярский край) // Известия РАН. Сер. Биологическая. 2018. № 2. С. 179–190.
  6. Гродницкая И.Д., Карпенко Л.В., Пашкеева О.Э., Гончарова Н.Н., Старцев В.В., Батурина О.А., Дымов А.А. Влияние лесных пожаров на микробиологические свойства торфяных олиготрофных почв и торфяно-подзолов глеевых в болотах северной части Сым-Дубческого междуречья (Красноярский край) // Почвоведение. 2022. № 4. С. 454–468.
  7. Дымов А.А., Дубровский Ю.А., Габов Д.Н., Жангуров Е.В., Низовцев Н.А. Влияние пожара в северотаежном ельнике на органическое вещество почвы // Лесоведение. 2015. № 1. С. 52–62.
  8. Дымов А.А. Сукцессии почв в бореальных лесах Республики Коми. М.: ГЕОС, 2020. 336 с. https://doi.org/10.34756/GEOS.2020.10.37828
  9. Забоева И.В. Почвы и земельные ресурсы Республики Коми. Сыктывкар: Коми книжное издательство, 1975. 343 с.
  10. Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
  11. Красильников П.В. Устойчивые соединения углерода в почвах: происхождение и функции // Почвоведение. 2015. № 9. С. 1131–1144. https://doi.org/10.7868/S0032180X15090075
  12. Лесные экосистемы Енисейского меридиана / Под ред. Плешикова Ф.И. Новосибирск: Изд-во СО РАН, 2002. 356 с.
  13. Методы почвенной микробиологии и биохимии / Под ред. Звягинцева Д.Г. М: Изд-во МГУ, 1991. 303 с.
  14. Медведева М.В., Бахмет О.Н., Ананьев В.А., Мошников С.А., Мамай А.В., Мошкина Е.В., Тимофеева В.В. Изменение биологической активности почв в хвойных насаждениях после пожара в средней тайге Карелии // Лесоведение. 2020. № 6. С. 560–574. https://doi.org/10.31857/S0024114820060066
  15. Осипов А.Ф., Старцев В.В., Прокушкин А.С., Дымов А.А. Запасы углерода в основных типах лесных почв и древесных пород Красноярского края // Теоретическая и прикладная экология. 2023. № 1. (в печати)
  16. Руднева Е.Н., Забоева И.В., Урусевская И.С. Почвенно-географическое районирование центральной и восточной частей европейской территории СССР // Подзолистые почвы центральной и восточной частей европейской территории СССР. Л.: Наука, 1981. 200 с.
  17. Теория и практика химического анализа почв / Под ред. Воробьевой Л.А. М., 2006. 400 с.
  18. Хабибуллина Ф.М., Кузнецова Е.Г., Васенева И.З. Микромицеты подзолистых и болотно-подзолистых почв в подзоне средней тайги на Северо-Востоке Европейской части России // Почвоведение. 2014. № 10. С. 1228. https://doi.org/10.7868/S0032180X14100049
  19. Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. № 3. P. 314–322.
  20. Bates S.T., Berg-Lyons D., Caporaso J.G., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil // ISME J. 2010. V. 5. P. 908–917.
  21. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data // Bioinformatics. 2014. V. 30(15). P. 2114–2120.
  22. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N. et al. QIIME allows analysis of high through put community sequencing data // Nature Methods. 2010. V. 7(5). P. 335–336. https://doi.org/10.1038/nmeth.f.303
  23. Comeau A.M., Li W.K.W., Tremblay J-E., Carmack E.C., Lovejoy C. Arctic Ocean Microbial Community Structure before and after the 2007 Record Sea Ice Minimum // PLoS ONE. 2011. V. 6(11). P. e27492. https://doi.org/10.1371/journal.pone.0027492
  24. Dedysh S.N., Ivanova A.A. Planctomycetes in boreal and subarctic wetlands: Diversity patterns and potential ecological functions // FEMS Microbiol Ecol. 2019. 95(2). https://doi.org/10.1093/femsec/fiy227
  25. Dymov A.A., Gorbach N.M., Goncharova N.N., Karpenko L.V., Gabov D.N., Kutyavin I.N., Startsev V.V., Mazur A.S., Grodnitskaya I.D. Holocene and recent fires influence on soil organic matter, microbiological and physico-chemical properties of peats in the European North-East of Russia // Catena. 2022. V. 117. P. 106449. https://doi.org/10.1016/j.catena.2022.106449
  26. Guerrero C., Mataix-Solera J., Gómez I., García-Orenes F., Jordán M.M. Microbial recolonization and chemical changes in a soil heated at different temperatures // Int. J. Wildland Fire. 2005. V. 14. P. 385–400.
  27. Khodadad C.L., Zimmerman A.R., Green S.J., Uthandi S., Foster J.S. Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments // Soil Biol. Biochem. 2011 V. 43(2). P. 385–392. https://doi.org/10.1016/j.soilbio.2010.11.005
  28. Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review // Biogeochemistry. 2007. V. 85 P. 91–118. https://doi.org/10.1007/s10533-007-9104-4
  29. Lehmann J., Liang B., Solomon D., Lerotic M., Luizão F., Kinyangi J., Schafer T., Wirick S., Jacobsen C. Near-edge X-ray absorption fine structure NEXAFS) spectroscopy for mapping nano-scale distribution of organic carbon forms in soil: Application to black carbon particles, Global Biogeochem. Cycles. 2005. V. 19. P. GB1013. https://doi.org/10.1029/2004GB002435
  30. Mataix-Solera J., Guerrero C., García-Orenes F., Bárcenas G.M., Torres M.P. Forest fire effects on soil microbiology // Fire Effects on Soils and Restoration Strategies. Eds. A. Cerdà Science Publishers: Enfield, 2009. P. 133–175.
  31. McMurdie P.J., Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data // PLoS ONE. 2013. V. 8(4). P. e61217. https://doi.org/10.1371/journal.pone.0061217
  32. Osipov A.F., Bobkova K.S., Dymov A.A. Carbon stocks of soils under forest in the Komi Republic of Russia // Geoderma Regional. 2021. V. 27. P. e00427. https://doi.org/10.1016/j.geodrs.2021.e00427
  33. Pandey A., Chaudhry Sh., Sharma A., Choudhary V.S., Malviya M.K., Chamoli S., Rinu K., Trivedi P., Palni L.M.S. Recovery of Bacillus and Pseudomonas spp. from the ‘Fired Plots’ Under Shifting Cultivation in Northeast India // Current Microbiology. 2011. V. 62. P. 273–280. https://doi.org/10.1007/s00284-010-9702-6
  34. Pietikäinen J., Hiukka R., Fritze H. Does short-term heating of forest humus change its properties as a substrate for microbes? // Soil Biol. Biochem. 2000. V. 32. P. 277–288.
  35. Preston C.M., Schmidt M.W.I. Black (pyrogenic) carbon: A synthesis of current knowledge and uncertainties with special consideration of boreal regions // Biogeosciences. 2006. V. 3(4). P. 397–420. https://doi.org/10.5194/bg-3-397-2006
  36. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F.O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. 2013.
  37. Sparling G.T. The substrate-induced respiration method // Methods in applied soil microbiology and biochemistry. Academic Press, 1995. P. 397–404.
  38. Startsev V.V., Yakovleva E.V., Kutyavin I.N., Dymov A.A. Fire Impact on Carbon Pools and Basic Properties of Retisols in Native Spruce Forests of the European North and Central Siberia of Russia // Forests. 2022. V. 13. P. 1135. https://doi.org/10.3390/f13071135
  39. Sun H., Santalahti M., Pumpanen J., Köster K., Berninger F., Raffaello T., Asiegbu F.O., Jussi Heinonsalo J. Bacterial community structure and function shift across a northern boreal forest fire chronosequence // Sci Rep. 2016. V. 6. P. 32411. https://doi.org/10.1038/srep32411
  40. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Res. Rep. no. 106, update 2015. FAO, Rome. www.fao.org
  41. Wright E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. // The R J. 2016. 8(1), 352–359. https://doi.org/10.1007/BF02927260
  42. http://web.uri.edu/gsc/files/16s-metagenomic-library-prep-guide-15044223-b.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (124KB)
3.

Download (142KB)
4.

Download (45KB)
5.

Download (149KB)

Copyright (c) 2023 И.Д. Гродницкая, О.Э. Пашкеева, В.В. Старцев, А.А. Дымов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies