Abundance and Diversity of Prokaryotic Communities of Dust Aerosol and Urban Soils on the Territory of Moscow

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The complex (quantitative and qualitative) characteristics of prokaryotic communities of solid atmospheric fallouts (dust aerosol) and soils in the territory of Moscow in areas with different intensity of anthropogenic load have been done. The total number of bacteria in the studied samples of solid atmospheric fallouts (SAF) was lower than the number of bacteria in soil samples; actinomycete mycelium was not found in the dust samples, although it was found in soil samples. The number of culturable saprotrophic bacteria in dust samples was an order of magnitude lower than in Urbic Technosols taken from the same plots. Representatives of the genus Micrococcus dominated among cultivated bacteria in the dust aerosols, while representatives of the phylum Proteobacteria dominated in soils. Representatives of the Enterobacteriaceae family were found in the dust samples, among which there are species that are potential human pathogens. The maximum biodiversity of bacteria of the Enterobacteriaceae family was recorded in the dust samples taken in areas with increased anthropogenic and transport load. The sanitary-indicative bacterium Escherichia coli was found in all samples of the dust and Urbic Technosols, its content varied (from 10 to 100 CFU/g), according to the degree of epidemic danger it characterizes dust and soils as moderately dangerous. Ecological indices calculated for prokaryotic communities in situ (barcoding of the 16S rRNA gene) indicate a lower taxonomic diversity of SAF prokaryotic communities compared to communities of closely spaced Urbic Technosols.

About the authors

L. V. Lysak

Lomonosov Moscow State University

Author for correspondence.
Email: lvlysak@mail.ru
Russia, 119991, Moscow

S. A. Shoba

Lomonosov Moscow State University

Email: lvlysak@mail.ru
Russia, 119991, Moscow

T. V. Prokof’eva

Lomonosov Moscow State University

Email: lvlysak@mail.ru
Russia, 119991, Moscow

A. M. Glushakova

Lomonosov Moscow State University; Mechnikov Research Institute of Vaccines and Sera

Email: lvlysak@mail.ru
Russia, 119991, Moscow; Russia, 105064, Moscow

N. V. Goncharov

Lomonosov Moscow State University

Email: lvlysak@mail.ru
Russia, 119991, Moscow

A. A. Belov

Lomonosov Moscow State University

Email: lvlysak@mail.ru
Russia, 119991, Moscow

References

  1. Виноградова К.А., Булгакова В.Г., Полин А.Н., Кожевин П.А. Устойчивость микроорганизмов к антибиотикам: резистома, ее объем, разнообразие и развитие // Антибиотики и химиотерапия. 2013. Т. 58. № 5–6. С. 38–48.
  2. Воробьева Л.И. Археи: учебное пособие для вузов. М.: ИКЦ “Академкнига”, 2007. 234 с.
  3. Глушакова А.М., Лысак Л.В., Умарова А.Б., Прокофьева Т.В., Подушин Ю.В., Быкова Г.С., Малюкова Л.П. Бактериальные комплексы урбаноземов некоторых южных городов России // Почвоведение. 2021. № 2. С. 224–231. https://doi.org/10.31857/S0032180X21020052
  4. Добровольская Т.Г. Структура бактериальных сообществ почв. М.: ИКЦ “Академкнига”, 2002. 281 с.
  5. Звягинцев Д.Г. Методы почвенной микробиологии и биохимии. М.: Изд-во Моск. ун-та, 1991. 60 с.
  6. Кожевин П.А. Микробные популяции в природе М.: Изд-во Моск. ун-та, 1989. 175 с.
  7. Лысак Л.В. Бактериальные сообщества городских почв. Автореф. дис. … докт. биол. наук. М., 2010.
  8. Лысак Л.В., Добровольская Т.Г., Скворцова И.Н. Методы оценки бактериального разнообразия почв и идентификации почвенных бактерий. М.: МАКС Пресс, 2003. 120 с.
  9. Лысак Л.В., Лапыгина Е.В. Разнообразие бактериальных сообществ городских почв // Почвоведение. 2018. № 9. С. 1108–1114. https://doi.org/10.1134/S0032180X18090071
  10. МР ФЦ/4022 Методы микробиологического контроля почвы.
  11. МУ 2.1.7.730-99. Гигиеническая оценка качества почвы населенных мест.
  12. Мэгарран Э. Экологическое разнообразие и его измерение М.: Мир, 1992. 184 с.
  13. Першина Е.В., Чернов Т.И. Основные физико-химические параметры почв, определяющие структуру почвенного метагенома // Основные достижения и перспективы почвенной метагеномики. 2017. С. 88–96.
  14. Ревич Б.А. Климат, качество атмосферного воздуха и здоровье москвичей. М.: Адаманть, 2006. 255 с.
  15. Тихонович И.А., Чернов Т.И., Железова А.Д., Тхакахова А.К., Андронов Е.Е., Кутовая О.В. Таксономическая структура прокариотных сообществ почв разных биоклиматических зон // Бюл. Почв. ин-та им. В.В. Докучаева. 2018. № 95. С. 125–153.
  16. Aminov R.I., Mackie R.I. Evolution and ecology of antibiotic resistance genes // FEMS Microbiol. Lett. 2007. V. 271. № 2. P. 147–161. https://doi.org/10.1111/j.1574-6968.2007.00757.x
  17. Arabaghian H., Salloum T., Alousi S., Panossian B., Araj G.F., Tokajian S. Molecular characterization of carbapenem resistant Klebsiella pneumoniae and Klebsiella quasipneumoniae isolated from Lebanon // Sci. Rep. 2019. V. 9. № 1. P. 1–12. https://doi.org/10.1038/s41598-018-36554-2
  18. Araújo R., Vázquez Calderón F., Sánchez López J., Azevedo I.C., Bruhn A., Fluch S., Ullmann J. Current status of the algae production industry in Europe: an emerging sector of the blue bioeconomy // Front. Mar. Sci. 2021. V. 7. P. 626389. https://doi.org/10.3389/fmars.2020.626389
  19. Belov A.A., Cheptsov V.S., Manucharova N.A., Ezhelev Z.S. Bacterial communities of Novaya Zemlya archipelago ice and permafrost // Geosciences. 2020. V. 10 № 2. P. 67. https://doi.org/10.3390/geosciences10020067
  20. Belov A.A., Cheptsov V.S., Vorobyova E.A., Manucharova N.A., Ezhelev Z.S. Stress-tolerance and taxonomy of culturable bacterial communities isolated from a central Mojave Desert soil sample // Geosciences. 2019. V. 9 № 4. P. 166. https://doi.org/10.3390/geosciences9040166
  21. Bergey D.H. Bergey’s Manual® of Systematic Bacteriology. Springer Science & Business Media, 2001.
  22. Bulgarelli D., Garrido-Oter R., Münch P.C., Weiman A., Dröge J., Pan Y., Schulze-Lefert P. Structure and function of the bacterial root microbiota in wild and domesticated barley // Cell Host Microbe. 2015. V. 17 № 3. P. 392–403. https://doi.org/10.1016/j.chom.2015.01.011
  23. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Knight R. QIIME allows analysis of high-throughput community sequencing data // Nat. Methods. 2010. V. 7. № 5. P. 335–336. https://doi.org/10.1038/nmeth.f.303
  24. Chaparro J.M., Badri D., Vivanco J.M. Rhizosphere microbiome assemblage is affected by plant development // The ISME J. 2014. V. 8. № 4. P. 790–803. https://doi.org/10.1038/ismej.2013.196
  25. Daniel R. The metagenomics of soil // Nat. Rev. Microbiol. 2005. V. 3. P. 470–478. https://doi.org/10.1038/nrmicro1160
  26. Davin-Regli A., Pagès J.M. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment // Front. Microbiol. 2015. V. 6. P. 392. https://doi.org/10.3389/fmicb.2015.00392
  27. de Bruyn J., Nixon L., Fawaz M., Johnson M., Radosevich M. Global Biogeography and Quantitative Season Dynamics of Gemmatimonadetes in Soil // Appl. Environ. Microbiol. 2011. V. 77. № 17. P. 6295–6300. https://doi.org/10.1128/AEM.05005-11
  28. Després V.R., Huffman J.A., Burrows S. M., Hoose C., Safatov A., Buryak G., Jaenicke R. Primary biological aerosol particles in the atmosphere: a review // Tellus B: Chem. Phys. Meteorol. 2012. V. 64. № 1. P. 15598. https://doi.org/10.3402/tellusb.v64i0.15598
  29. Glushakova A.M., Kachalkin A.V., Prokof’eva T.V., Lysak L.V. Enterobacteriaceae in soils and atmospheric dust aerosol accumulations of Moscow city // Current Res. Microbial Sci. 2022. V. 3. P. 100124. https://doi.org/10.1016/j.crmicr.2022.100124
  30. Goel A., Kumar P. Characterisation of nanoparticle emissions and exposure at traffic intersections through fast–response mobile and sequential measurements // Atmos. Environ. 2015. V. 107. P. 374–390. https://doi.org/10.1016/j.atmosenv.2015.02.002
  31. Karagulian F., Belis C.A., Dora C.F.C., Prüss-Ustün A.M., Bonjour S., Adair-Rohani H., Amann M. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level // Atmos. Environ. 2015. V. 120. P. 475–483. https://doi.org/10.1016/j.atmosenv.2015.08.087
  32. Kumari S., Jain M.K. A critical review on air quality index // Environ. Pollut. 2018. P. 87–102. https://doi.org/10.1007/978-981-10-5792-2_8
  33. Luong L.M., Phung D., Sly P.D., Morawska L., Thai P.K. The association between particulate air pollution and respiratory admissions among young children in Hanoi, Vietnam // Sci. Total Environ. 2017. V. 578. P. 249–255. https://doi.org/10.1016/j.scitotenv.2016.08.012
  34. Phan C.C., Nguyen T.Q.H., Nguyen M.K., Park K.H., Bae G.N., Seung-bok L., Bach Q. Aerosol mass and major composition characterization of ambient air in Ho Chi Minh City, Vietnam // Int. J. Environ. Sci. Technol. 2020. V. 17. № 6. P. 3189–3198. https://doi.org/10.1007/s13762-020-02640-0
  35. Prokof’eva T.V., Shoba S.A., Lysak L.V., Ivanova A.E., Glushakova A.M., Shishkov V.A., Lapygina E.V., Shilaika P.D., Glebova A.A. Organic constituents and biota in the urban atmospheric solid aerosol: potential effects on urban soils // Eurasian Soil Sci. 2021. 54. №. 10. P. 1532–1545. https://doi.org/10.1134/S1064229321100094
  36. Prokof’eva T.V., Kiryushin A.V., Shishkov V.A., Ivannikov F.A. The importance of dust material in urban soil formation: the experience on study of two young Technosols on dust depositions // J. Soils Sediments. 2017. V 17. № 2. P. 515–524. https://doi.org/10.1007/s11368-016-1546-7
  37. Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., Glöckner, F.O. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB // Nucleic Acids Res. 2007. V. 35. № 21. P. 7188–7196. https://doi.org/10.1093/nar/gkm864
  38. Stokes H.W., Gillings M.R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens // FEMS Microbiol. Rev. 2011. V. 35. № 5. P. 790–819. https://doi.org/10.1111/j.1574-6976.2011.00273.x
  39. Tourna M., Stieglmeier M., Spang A., Könneke M., Schintlmeister A., Urich T., Schleper C. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil // Proc. Natl. Acad. Sci. USA. 2011. V. 108. № 20. P. 8420–8425. https://doi.org/10.1073/pnas.1013488108
  40. Vlasov D., Kosheleva N., Kasimov N. Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity // Sci. Total Environ. 2021. V. 761. P. 143267. https://doi.org/10.1016/j.scitotenv.2020.143267
  41. World Health Organization. Air quality guidelines for Europe. World Health Organization. Regional Office for Europe, 2000.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (223KB)

Copyright (c) 2023 Л.В. Лысак, С.А. Шоба, Т.В. Прокофьева, А.М. Глушакова, Н.В. Гончаров, А.А. Белов

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies