Modeling of Wear Behavior of Al–Si/Al2O3 Metal Matrix Composites


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Artificial neural network (ANN) approach, analysis of variance (ANOVA), and multiple regression model were developed to predict the wear rate for the aluminum (Al)-silicon (Si) alloy. These methods were based on weight fractions of alumina (Al2O3), load, and sliding distance as inputs. Metal matrix composites (MMCs) were prepared using stir casting method. The Al–Si alloy was reinforced with the addition of 0, 10, 15, 20, and 25 wt % of Al2O3 particles. The ANN model was utilized to predict the wear rates of the composites. Experimental results indicated that the increase of both load and sliding distance increases the wear rate. However, the increase of weight fractions of alumina (Al2O3) decreases the wear rate. Both ANN and ANOVA revealed that the sliding distance has the major influence on the wear rate in comparison with the factor of alumina weight fraction. However, the applied load has a relatively low influence on the wear rate of Al–Si/Al2O3 composite. A multiple regression approach suggested in this study reveals the correlation between the weight fractions of Al2O3, load, and sliding distance and the wear rate.

Об авторах

M. Megahed

Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University

Email: daliasaber13@yahoo.com
Египет, Zagazig, 44519

D. Saber

Materials Engineering Department, Faculty of Engineering, Zagazig University

Автор, ответственный за переписку.
Email: daliasaber13@yahoo.com
Египет, Zagazig, 44519

M. Agwa

Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University

Email: daliasaber13@yahoo.com
Египет, Zagazig, 44519

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).