Holocene Environments in the Reykjanes Ridge Area, North Atlantic, Based on Micropaleontological Data
- Authors: Matul A.G1, Melnikova A.A1, Kazarina G.K.1, Novichkova E.A1
-
Affiliations:
- Shirshov Institute of Oceanology of Russian Academy of Sciences
- Issue: Vol 65, No 5 (2025)
- Pages: 860-869
- Section: Морская геология
- URL: https://journals.rcsi.science/0030-1574/article/view/375797
- DOI: https://doi.org/10.7868/S3034597925050106
- ID: 375797
Cite item
Abstract
About the authors
A. G Matul
Shirshov Institute of Oceanology of Russian Academy of Sciences
Email: amatul@mail.ru
Moscow, Russia
A. A Melnikova
Shirshov Institute of Oceanology of Russian Academy of SciencesMoscow, Russia
G. Kh Kazarina
Shirshov Institute of Oceanology of Russian Academy of SciencesMoscow, Russia
E. A Novichkova
Shirshov Institute of Oceanology of Russian Academy of SciencesMoscow, Russia
References
- Купцов В.М., Бартенев Д.И., Палкина А.М. Радиоуглеродная хронология осадков // Рифтовая зона хребта Рейкьянес: тектоника, магматизм, условия осадконакопления / Лисицын А.П., Зонецшайн Л.П. (отв. ред.). М.: Наука, 1990. С. 130–142.
- Матуль А.Г. Распределение радиолярий в поверхностном слое осадков Северной Атлантики // Океанология. 1989. Т. 29. № 6. С. 740–745.
- Матуль А.Г., Новикова Е.А., Казарина Г.Х. и др. Поверхностные донные осадки Северной Атлантики на профиле вдоль 59.5° с.ш. // Океанология. 2023. Т. 63. № 2. С. 307–327. https://doi.org/10.31857/S0030157423010100
- Демидов А.Б., Мошаров С.А., Гагарин В.И., и др. Пространственная изменчивость продукционных характеристик фитопланктона в Северной Атлантике летом 2013 г. // Океанология. 2019. Т. 59. № 2. С. 243256. https://doi.org/10.31857/S0030-1574592243256
- Рифтовая зона хребта Рейкьянес: тектоника, магматизм, условия осадконакопления / Лисицын А.П., Зонецшайн Л.П. (отв. ред.). М.: Наука, 1990. 239 c.
- Barash M.S., Yushina I.G. Reconstructions of the Quaternary North Atlantic paleohydrological variability by means of planktonic foraminifera data (method of factor analysis and spline interpolation) // Berichte zur Polarforschung. 1999. V. 306. P. 4–34. https://doi.org/10.2312/BzP_0306_1999
- Blaauw M., Christen J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process // Bayesian Analysis. 2011. V. 6 (3). P. 457–474. https://doi.org/10.1214/11-BA618
- Bond G., Kromer B., Beer J. et al. Persistent Solar Influence on North Atlantic Climate During the Holocene // Science. 2001. V. 294. P. 2130–2136. https://doi.org/10.1126/science.1065680
- Elmore A.C., Wright J.D., Southon J. Continued meltwater influence on North Atlantic Deep Water instabilities during the early Holocene // Marine Geology. 2015. V. 360. P. 17–24. https://doi.org/10.1016/j.margeo.2014.11.015
- Eynaud F. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and Quaternary populations // IOP Conference Series: Earth and Environmental. Science. 2011. V. 14. 012005. https://doi.org/10.1088/1755-1315/14/1/012005
- Heaton T.J., Köhler P., Butzin M., et al. Marine20 – the marine radiocarbon age calibration curve (0–55,000 cal BP) // Radiocarbon. 2020. V. 62. P. 779–820. https://doi.org/10.1017/RDC.2020.68
- Kaufman D.S., Ager T.A., Anderson N.J., et al. Holocene thermal maximum in the western Arctic (0–180°W) // Quaternary Science Reviews. 2004. V. 23. Is. 5–6. P. 529–560. https://doi.org/10.1016/j.quascirev.2003.09.007
- Kazarina G.K., Yushina I.G. Diatoms in recent and Holocene sediments of the North Pacific and Bering Sea // Berichte zur Polarforschung. 1999. V. 306. P. 120–133. https://doi.org/10.2312/BzP_0306_1999
- Koҫ Karpuz N., Schrader H. Surface sediment diatom distribution and Holocene paleotemperature variations in the Greenland, Iceland and Norwegian Sea // Paleoceanography. 1990. V. 5. P. 557–580. https://doi.org/10.1029/PA005004p00557
- Krauss W. Currents and mixing in the Irminger Sea and in the Iceland Basin // Journal of Geophysical Research. 1995. V. 100 (C6). P. 10.851–10.871. https://doi.org/10.1029/95JC00423
- Kretschmer K., Jonkers L., Kucera M., Schulz M. Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale // Biogeosciences. 2018. V. 15. P. 4405–4429. https://doi.org/10.5194/bg-15-4405-2018
- Locarnini R.A., Mishonov A.V., Antonov J.I. et al. World Ocean Atlas 2013. V. 1. Temperature. NOAA Atlas NESDIST3. Washington, DC: NOAA, U.S. Department of Commerce, 2013.
- Marcott S.A., Shakun J.D., Clark P.U., Mix A.C. A Reconstruction of Regional and Global Temperature for the Past 11.300 Years // Science. 2013. V. 339. P. 1198–1201. https://doi.org/10.1126/science.1228026
- Matero I.S.O., Gregoire L.J., Ivanovic R.F. et al. The 8.2 ka cooling event caused by Laurentide ice saddle collapse // Earth and Planetary Science Letters. 2017. V. 473. P. 205–214. https://doi.org/10.1016/j.epsl.2017.06.011
- Matthews J.A. GLACIATIONS / Neoglaciation in Europe // Encyclopedia of Quaternary Science (Second Edition) / Elias S.A., Mock C.J. (Eds.). Amsterdam, Netherlands: Elsevier, 2013. P. 257–268. https://doi.org/10.1016/B978-0-444-53643-3.00126-6
- Matul A., Mohan R. Distribution of Polycystine Radiolarians in Bottom Surface Sediments and Its Relation to Summer Sea Temperature in the High-Latitude North Atlantic // Frontiers in Marine Science. 2017. V. 4. 330. https://doi.org/10.3389/fmars.2017.00330
- Matul A., Barash M.S., Khusid T.A. et al. Paleoenvironment Variability during Termination I at the Reykjanes Ridge, North Atlantic // Geosciences. 2018. V. 8. № 10. 375. https://doi.org/10.3390/geosciences8100375
- Matul A.G., Novichkova E.A., Klyuvitkina T.S. et al. Paleoceanology of the Norwegian–Greenland Basin in the Middle–Late Holocene Based on the Microfossil Distribution // Paleontological Journal. 2024. V. 58. № 7. P. 745–751. https://doi.org/10.1134/S0031030124600410
- Mayewski P.A., Rohling E.E., Stager J.C. et al. Holocene climate variability // Quaternary Research. 2004. V. 62. Is. 3. P. 243–255. https://doi.org/10.1016/j.yqres.2004.07.001
- Maynard N.G. Relationship between diatoms in surface sediments of the Atlantic Ocean and the biological and physical oceanography of overlying waters // Paleobiology. 1976. V. 2. P. 99–121.
- McKay N.P., Kaufman D.S., Routson C.C. et al. The onset and rate of Holocene Neoglacial cooling in the Arctic // Geophysical Research Letters. 2018. V. 45. P. 12.487–12.496. https://doi.org/10.1029/2018GL079773
- Miettinen A., Divine D.V., Husum K. et al. Exceptional ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly // Paleoceanography. 2015. V. 30. P. 1657–1674. https://doi.org/10.1002/2015PA002849
- North Greenland Ice Core Project (NGRIP) members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period // Nature. 2004. V. 431. № 7005. P. 147–151. http://dx.doi.org/10.1038/nature02805
- Ólafsdóttir S., Jennings A.E., Geirsdóttir A. et al. Holocene variability of the North Atlantic Irminger current on the south- and northwest shelf of Iceland // Marine Micropaleontology. 2010. V. 77 (3–4). P. 101–118. https://doi.org/10.1016/j.marmicro.2010.08.002
- Pados T., Spielhagen R.F. Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean // Polar Research. 2014. V. 33. 22483. https://doi.org/10.3402/polar.v33.22483
- Ren J., Gersonde R., Esper O., Sancetta C. Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables // Palaeogeography, Palaeoclimatology, Palaeoecology. 2014. V. 402. P. 81–103. https://doi.org/10.1016/j.palaeo.2014.03.008
- Rickaby R.E.M., Elderfield H. Evidence from the high-latitude North Atlantic for variations in Antarctic Intermediate water flow during the last deglaciation // Geochemistry, Geophysics, Geosystems. 2005. V. 6. Q05001. https://doi.org/10.1029/2004GC000858
- Rohling E.J., Pälike H. Centennial-scale climate cooling with a sudden cold event around 8.200 years ago // Nature. 2005. V. 434. P. 975–979. https://doi.org/10.1038/nature03421
- Sahoo N., Saalim S.M., Matul A. et al. Planktic Foraminiferal Assemblages in Surface Sediments From the Subpolar North Atlantic Ocean // Frontiers in Marine Science. 2022. V. 8. 781675. https://doi.org/10.3389/fmars.2021.781675
- Schlitzer R. Ocean Data View [online]. 2021. Available at: o.tv.awi.de [Accessed on 25.03.2025].
- Sejnup H.P., Seppä H., McKay N.P. et al. North Atlantic-Fennoscandian Holocene climate trends and mechanisms // Quaternary Science Reviews. 2016. V. 147. P. 365–378. https://doi.org/10.1016/j.quascirev.2016.06.005
- Sieger R., Grobe H. PanTool – A Swiss Army Knife for Data Conversion and Recalculation [online]. 2025. Available at: https://doi.org/10.1594/PANGAEA.787549. [Accessed on 25.03.2025].
- Stuiver M., Reimer P.J. Extended 14C data base and revised CALIB3.0 14C age calibration program (CALIB rev. 8) // Radiocarbon. 1993. V. 35. P. 215–230. https://doi.org/10.1017/S0033822200013904
- Thomas E.R., Wolff E.W., Mulvaney R. et al. The 8.2ka event from Greenland ice cores // Quaternary Science Reviews. 2007. V. 26. Is. 1–2. P. 70–81. https://doi.org/10.1016/j.quascirev.2006.07.017
- Thornalley D.J.R., Elderfield H., McCave I.N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic // Nature. 2009. V. 457. P. 711–714. https://doi.org/10.1038/nature07717
- Tzedakis P.C., Drysdale R.N., Margari V., et al. Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial // Nature Communications. 2018. V. 9 (1). 4235. https://doi.org/10.1038/s41467-018-06683-3
- Våge K., Pickart R.S., Sarafanov A. et al. The Irminger Gyre: Circulation, convection, and interannual variability // Deep-Sea Research I. 2011. V. 58. P. 590–614. https://doi.org/10.1016/j.dsr.2011.03.001
- Witkowski J., Edgar K., Harding I. et al. Marine Microfossils // Encyclopedia of Marine Geosciences / J. Harff, M. Meschede, S. Petersen, J. Thiede (eds.). Dordrecht, Netherlands: Springer, 2015. https://doi.org/10.1007/978-94-007-6644-0_73-1
Supplementary files


