Holocene Environments in the Reykjanes Ridge Area, North Atlantic, Based on Micropaleontological Data

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New data on the stability of marine systems and the manifestation of the Holocene thermal optimum as a modern interglacial in the eastern part of the North Atlantic Subpolar Gyre were obtained. Interpretation of micropaleontological data from the AMK‑325 sediment core and reconstructed summer sea paleotemperatures revealed the peculiarities of the development of the local environment in the last 10.8 thousand years. The rapid transition in the Early Holocene 10.1–9.3 thousand years ago to a warm state almost up to the modern level occurred in accordance with regional and global paleoclimatic archives. The subsequent strongly pronounced cold interval 8.2–7.3 thousand years ago is consistent with the global cooling “8.2 ka”, but was much longer. The establishment of optimal conditions with an increase in water temperature by 1.5–2°C above modern values was noted in the second half of the Middle Holocene 6.8–4.9 thousand years ago, later than the global Holocene optimum.

About the authors

A. G Matul

Shirshov Institute of Oceanology of Russian Academy of Sciences

Email: amatul@mail.ru
Moscow, Russia

A. A Melnikova

Shirshov Institute of Oceanology of Russian Academy of Sciences

Moscow, Russia

G. Kh Kazarina

Shirshov Institute of Oceanology of Russian Academy of Sciences

Moscow, Russia

E. A Novichkova

Shirshov Institute of Oceanology of Russian Academy of Sciences

Moscow, Russia

References

  1. Купцов В.М., Бартенев Д.И., Палкина А.М. Радиоуглеродная хронология осадков // Рифтовая зона хребта Рейкьянес: тектоника, магматизм, условия осадконакопления / Лисицын А.П., Зонецшайн Л.П. (отв. ред.). М.: Наука, 1990. С. 130–142.
  2. Матуль А.Г. Распределение радиолярий в поверхностном слое осадков Северной Атлантики // Океанология. 1989. Т. 29. № 6. С. 740–745.
  3. Матуль А.Г., Новикова Е.А., Казарина Г.Х. и др. Поверхностные донные осадки Северной Атлантики на профиле вдоль 59.5° с.ш. // Океанология. 2023. Т. 63. № 2. С. 307–327. https://doi.org/10.31857/S0030157423010100
  4. Демидов А.Б., Мошаров С.А., Гагарин В.И., и др. Пространственная изменчивость продукционных характеристик фитопланктона в Северной Атлантике летом 2013 г. // Океанология. 2019. Т. 59. № 2. С. 243256. https://doi.org/10.31857/S0030-1574592243256
  5. Рифтовая зона хребта Рейкьянес: тектоника, магматизм, условия осадконакопления / Лисицын А.П., Зонецшайн Л.П. (отв. ред.). М.: Наука, 1990. 239 c.
  6. Barash M.S., Yushina I.G. Reconstructions of the Quaternary North Atlantic paleohydrological variability by means of planktonic foraminifera data (method of factor analysis and spline interpolation) // Berichte zur Polarforschung. 1999. V. 306. P. 4–34. https://doi.org/10.2312/BzP_0306_1999
  7. Blaauw M., Christen J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process // Bayesian Analysis. 2011. V. 6 (3). P. 457–474. https://doi.org/10.1214/11-BA618
  8. Bond G., Kromer B., Beer J. et al. Persistent Solar Influence on North Atlantic Climate During the Holocene // Science. 2001. V. 294. P. 2130–2136. https://doi.org/10.1126/science.1065680
  9. Elmore A.C., Wright J.D., Southon J. Continued meltwater influence on North Atlantic Deep Water instabilities during the early Holocene // Marine Geology. 2015. V. 360. P. 17–24. https://doi.org/10.1016/j.margeo.2014.11.015
  10. Eynaud F. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and Quaternary populations // IOP Conference Series: Earth and Environmental. Science. 2011. V. 14. 012005. https://doi.org/10.1088/1755-1315/14/1/012005
  11. Heaton T.J., Köhler P., Butzin M., et al. Marine20 – the marine radiocarbon age calibration curve (0–55,000 cal BP) // Radiocarbon. 2020. V. 62. P. 779–820. https://doi.org/10.1017/RDC.2020.68
  12. Kaufman D.S., Ager T.A., Anderson N.J., et al. Holocene thermal maximum in the western Arctic (0–180°W) // Quaternary Science Reviews. 2004. V. 23. Is. 5–6. P. 529–560. https://doi.org/10.1016/j.quascirev.2003.09.007
  13. Kazarina G.K., Yushina I.G. Diatoms in recent and Holocene sediments of the North Pacific and Bering Sea // Berichte zur Polarforschung. 1999. V. 306. P. 120–133. https://doi.org/10.2312/BzP_0306_1999
  14. Koҫ Karpuz N., Schrader H. Surface sediment diatom distribution and Holocene paleotemperature variations in the Greenland, Iceland and Norwegian Sea // Paleoceanography. 1990. V. 5. P. 557–580. https://doi.org/10.1029/PA005004p00557
  15. Krauss W. Currents and mixing in the Irminger Sea and in the Iceland Basin // Journal of Geophysical Research. 1995. V. 100 (C6). P. 10.851–10.871. https://doi.org/10.1029/95JC00423
  16. Kretschmer K., Jonkers L., Kucera M., Schulz M. Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale // Biogeosciences. 2018. V. 15. P. 4405–4429. https://doi.org/10.5194/bg-15-4405-2018
  17. Locarnini R.A., Mishonov A.V., Antonov J.I. et al. World Ocean Atlas 2013. V. 1. Temperature. NOAA Atlas NESDIST3. Washington, DC: NOAA, U.S. Department of Commerce, 2013.
  18. Marcott S.A., Shakun J.D., Clark P.U., Mix A.C. A Reconstruction of Regional and Global Temperature for the Past 11.300 Years // Science. 2013. V. 339. P. 1198–1201. https://doi.org/10.1126/science.1228026
  19. Matero I.S.O., Gregoire L.J., Ivanovic R.F. et al. The 8.2 ka cooling event caused by Laurentide ice saddle collapse // Earth and Planetary Science Letters. 2017. V. 473. P. 205–214. https://doi.org/10.1016/j.epsl.2017.06.011
  20. Matthews J.A. GLACIATIONS / Neoglaciation in Europe // Encyclopedia of Quaternary Science (Second Edition) / Elias S.A., Mock C.J. (Eds.). Amsterdam, Netherlands: Elsevier, 2013. P. 257–268. https://doi.org/10.1016/B978-0-444-53643-3.00126-6
  21. Matul A., Mohan R. Distribution of Polycystine Radiolarians in Bottom Surface Sediments and Its Relation to Summer Sea Temperature in the High-Latitude North Atlantic // Frontiers in Marine Science. 2017. V. 4. 330. https://doi.org/10.3389/fmars.2017.00330
  22. Matul A., Barash M.S., Khusid T.A. et al. Paleoenvironment Variability during Termination I at the Reykjanes Ridge, North Atlantic // Geosciences. 2018. V. 8. № 10. 375. https://doi.org/10.3390/geosciences8100375
  23. Matul A.G., Novichkova E.A., Klyuvitkina T.S. et al. Paleoceanology of the Norwegian–Greenland Basin in the Middle–Late Holocene Based on the Microfossil Distribution // Paleontological Journal. 2024. V. 58. № 7. P. 745–751. https://doi.org/10.1134/S0031030124600410
  24. Mayewski P.A., Rohling E.E., Stager J.C. et al. Holocene climate variability // Quaternary Research. 2004. V. 62. Is. 3. P. 243–255. https://doi.org/10.1016/j.yqres.2004.07.001
  25. Maynard N.G. Relationship between diatoms in surface sediments of the Atlantic Ocean and the biological and physical oceanography of overlying waters // Paleobiology. 1976. V. 2. P. 99–121.
  26. McKay N.P., Kaufman D.S., Routson C.C. et al. The onset and rate of Holocene Neoglacial cooling in the Arctic // Geophysical Research Letters. 2018. V. 45. P. 12.487–12.496. https://doi.org/10.1029/2018GL079773
  27. Miettinen A., Divine D.V., Husum K. et al. Exceptional ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly // Paleoceanography. 2015. V. 30. P. 1657–1674. https://doi.org/10.1002/2015PA002849
  28. North Greenland Ice Core Project (NGRIP) members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period // Nature. 2004. V. 431. № 7005. P. 147–151. http://dx.doi.org/10.1038/nature02805
  29. Ólafsdóttir S., Jennings A.E., Geirsdóttir A. et al. Holocene variability of the North Atlantic Irminger current on the south- and northwest shelf of Iceland // Marine Micropaleontology. 2010. V. 77 (3–4). P. 101–118. https://doi.org/10.1016/j.marmicro.2010.08.002
  30. Pados T., Spielhagen R.F. Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean // Polar Research. 2014. V. 33. 22483. https://doi.org/10.3402/polar.v33.22483
  31. Ren J., Gersonde R., Esper O., Sancetta C. Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables // Palaeogeography, Palaeoclimatology, Palaeoecology. 2014. V. 402. P. 81–103. https://doi.org/10.1016/j.palaeo.2014.03.008
  32. Rickaby R.E.M., Elderfield H. Evidence from the high-latitude North Atlantic for variations in Antarctic Intermediate water flow during the last deglaciation // Geochemistry, Geophysics, Geosystems. 2005. V. 6. Q05001. https://doi.org/10.1029/2004GC000858
  33. Rohling E.J., Pälike H. Centennial-scale climate cooling with a sudden cold event around 8.200 years ago // Nature. 2005. V. 434. P. 975–979. https://doi.org/10.1038/nature03421
  34. Sahoo N., Saalim S.M., Matul A. et al. Planktic Foraminiferal Assemblages in Surface Sediments From the Subpolar North Atlantic Ocean // Frontiers in Marine Science. 2022. V. 8. 781675. https://doi.org/10.3389/fmars.2021.781675
  35. Schlitzer R. Ocean Data View [online]. 2021. Available at: o.tv.awi.de [Accessed on 25.03.2025].
  36. Sejnup H.P., Seppä H., McKay N.P. et al. North Atlantic-Fennoscandian Holocene climate trends and mechanisms // Quaternary Science Reviews. 2016. V. 147. P. 365–378. https://doi.org/10.1016/j.quascirev.2016.06.005
  37. Sieger R., Grobe H. PanTool – A Swiss Army Knife for Data Conversion and Recalculation [online]. 2025. Available at: https://doi.org/10.1594/PANGAEA.787549. [Accessed on 25.03.2025].
  38. Stuiver M., Reimer P.J. Extended 14C data base and revised CALIB3.0 14C age calibration program (CALIB rev. 8) // Radiocarbon. 1993. V. 35. P. 215–230. https://doi.org/10.1017/S0033822200013904
  39. Thomas E.R., Wolff E.W., Mulvaney R. et al. The 8.2ka event from Greenland ice cores // Quaternary Science Reviews. 2007. V. 26. Is. 1–2. P. 70–81. https://doi.org/10.1016/j.quascirev.2006.07.017
  40. Thornalley D.J.R., Elderfield H., McCave I.N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic // Nature. 2009. V. 457. P. 711–714. https://doi.org/10.1038/nature07717
  41. Tzedakis P.C., Drysdale R.N., Margari V., et al. Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial // Nature Communications. 2018. V. 9 (1). 4235. https://doi.org/10.1038/s41467-018-06683-3
  42. Våge K., Pickart R.S., Sarafanov A. et al. The Irminger Gyre: Circulation, convection, and interannual variability // Deep-Sea Research I. 2011. V. 58. P. 590–614. https://doi.org/10.1016/j.dsr.2011.03.001
  43. Witkowski J., Edgar K., Harding I. et al. Marine Microfossils // Encyclopedia of Marine Geosciences / J. Harff, M. Meschede, S. Petersen, J. Thiede (eds.). Dordrecht, Netherlands: Springer, 2015. https://doi.org/10.1007/978-94-007-6644-0_73-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).