Holocene Environments in the Reykjanes Ridge Area, North Atlantic, Based on Micropaleontological Data
- Autores: Matul A.G1, Melnikova A.A1, Kazarina G.K.1, Novichkova E.A1
-
Afiliações:
- Shirshov Institute of Oceanology of Russian Academy of Sciences
- Edição: Volume 65, Nº 5 (2025)
- Páginas: 860-869
- Seção: Морская геология
- URL: https://journals.rcsi.science/0030-1574/article/view/375797
- DOI: https://doi.org/10.7868/S3034597925050106
- ID: 375797
Citar
Resumo
Palavras-chave
Sobre autores
A. Matul
Shirshov Institute of Oceanology of Russian Academy of Sciences
Email: amatul@mail.ru
Moscow, Russia
A. Melnikova
Shirshov Institute of Oceanology of Russian Academy of SciencesMoscow, Russia
G. Kazarina
Shirshov Institute of Oceanology of Russian Academy of SciencesMoscow, Russia
E. Novichkova
Shirshov Institute of Oceanology of Russian Academy of SciencesMoscow, Russia
Bibliografia
- Купцов В.М., Бартенев Д.И., Палкина А.М. Радиоуглеродная хронология осадков // Рифтовая зона хребта Рейкьянес: тектоника, магматизм, условия осадконакопления / Лисицын А.П., Зонецшайн Л.П. (отв. ред.). М.: Наука, 1990. С. 130–142.
- Матуль А.Г. Распределение радиолярий в поверхностном слое осадков Северной Атлантики // Океанология. 1989. Т. 29. № 6. С. 740–745.
- Матуль А.Г., Новикова Е.А., Казарина Г.Х. и др. Поверхностные донные осадки Северной Атлантики на профиле вдоль 59.5° с.ш. // Океанология. 2023. Т. 63. № 2. С. 307–327. https://doi.org/10.31857/S0030157423010100
- Демидов А.Б., Мошаров С.А., Гагарин В.И., и др. Пространственная изменчивость продукционных характеристик фитопланктона в Северной Атлантике летом 2013 г. // Океанология. 2019. Т. 59. № 2. С. 243256. https://doi.org/10.31857/S0030-1574592243256
- Рифтовая зона хребта Рейкьянес: тектоника, магматизм, условия осадконакопления / Лисицын А.П., Зонецшайн Л.П. (отв. ред.). М.: Наука, 1990. 239 c.
- Barash M.S., Yushina I.G. Reconstructions of the Quaternary North Atlantic paleohydrological variability by means of planktonic foraminifera data (method of factor analysis and spline interpolation) // Berichte zur Polarforschung. 1999. V. 306. P. 4–34. https://doi.org/10.2312/BzP_0306_1999
- Blaauw M., Christen J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process // Bayesian Analysis. 2011. V. 6 (3). P. 457–474. https://doi.org/10.1214/11-BA618
- Bond G., Kromer B., Beer J. et al. Persistent Solar Influence on North Atlantic Climate During the Holocene // Science. 2001. V. 294. P. 2130–2136. https://doi.org/10.1126/science.1065680
- Elmore A.C., Wright J.D., Southon J. Continued meltwater influence on North Atlantic Deep Water instabilities during the early Holocene // Marine Geology. 2015. V. 360. P. 17–24. https://doi.org/10.1016/j.margeo.2014.11.015
- Eynaud F. Planktonic foraminifera in the Arctic: potentials and issues regarding modern and Quaternary populations // IOP Conference Series: Earth and Environmental. Science. 2011. V. 14. 012005. https://doi.org/10.1088/1755-1315/14/1/012005
- Heaton T.J., Köhler P., Butzin M., et al. Marine20 – the marine radiocarbon age calibration curve (0–55,000 cal BP) // Radiocarbon. 2020. V. 62. P. 779–820. https://doi.org/10.1017/RDC.2020.68
- Kaufman D.S., Ager T.A., Anderson N.J., et al. Holocene thermal maximum in the western Arctic (0–180°W) // Quaternary Science Reviews. 2004. V. 23. Is. 5–6. P. 529–560. https://doi.org/10.1016/j.quascirev.2003.09.007
- Kazarina G.K., Yushina I.G. Diatoms in recent and Holocene sediments of the North Pacific and Bering Sea // Berichte zur Polarforschung. 1999. V. 306. P. 120–133. https://doi.org/10.2312/BzP_0306_1999
- Koҫ Karpuz N., Schrader H. Surface sediment diatom distribution and Holocene paleotemperature variations in the Greenland, Iceland and Norwegian Sea // Paleoceanography. 1990. V. 5. P. 557–580. https://doi.org/10.1029/PA005004p00557
- Krauss W. Currents and mixing in the Irminger Sea and in the Iceland Basin // Journal of Geophysical Research. 1995. V. 100 (C6). P. 10.851–10.871. https://doi.org/10.1029/95JC00423
- Kretschmer K., Jonkers L., Kucera M., Schulz M. Modeling seasonal and vertical habitats of planktonic foraminifera on a global scale // Biogeosciences. 2018. V. 15. P. 4405–4429. https://doi.org/10.5194/bg-15-4405-2018
- Locarnini R.A., Mishonov A.V., Antonov J.I. et al. World Ocean Atlas 2013. V. 1. Temperature. NOAA Atlas NESDIST3. Washington, DC: NOAA, U.S. Department of Commerce, 2013.
- Marcott S.A., Shakun J.D., Clark P.U., Mix A.C. A Reconstruction of Regional and Global Temperature for the Past 11.300 Years // Science. 2013. V. 339. P. 1198–1201. https://doi.org/10.1126/science.1228026
- Matero I.S.O., Gregoire L.J., Ivanovic R.F. et al. The 8.2 ka cooling event caused by Laurentide ice saddle collapse // Earth and Planetary Science Letters. 2017. V. 473. P. 205–214. https://doi.org/10.1016/j.epsl.2017.06.011
- Matthews J.A. GLACIATIONS / Neoglaciation in Europe // Encyclopedia of Quaternary Science (Second Edition) / Elias S.A., Mock C.J. (Eds.). Amsterdam, Netherlands: Elsevier, 2013. P. 257–268. https://doi.org/10.1016/B978-0-444-53643-3.00126-6
- Matul A., Mohan R. Distribution of Polycystine Radiolarians in Bottom Surface Sediments and Its Relation to Summer Sea Temperature in the High-Latitude North Atlantic // Frontiers in Marine Science. 2017. V. 4. 330. https://doi.org/10.3389/fmars.2017.00330
- Matul A., Barash M.S., Khusid T.A. et al. Paleoenvironment Variability during Termination I at the Reykjanes Ridge, North Atlantic // Geosciences. 2018. V. 8. № 10. 375. https://doi.org/10.3390/geosciences8100375
- Matul A.G., Novichkova E.A., Klyuvitkina T.S. et al. Paleoceanology of the Norwegian–Greenland Basin in the Middle–Late Holocene Based on the Microfossil Distribution // Paleontological Journal. 2024. V. 58. № 7. P. 745–751. https://doi.org/10.1134/S0031030124600410
- Mayewski P.A., Rohling E.E., Stager J.C. et al. Holocene climate variability // Quaternary Research. 2004. V. 62. Is. 3. P. 243–255. https://doi.org/10.1016/j.yqres.2004.07.001
- Maynard N.G. Relationship between diatoms in surface sediments of the Atlantic Ocean and the biological and physical oceanography of overlying waters // Paleobiology. 1976. V. 2. P. 99–121.
- McKay N.P., Kaufman D.S., Routson C.C. et al. The onset and rate of Holocene Neoglacial cooling in the Arctic // Geophysical Research Letters. 2018. V. 45. P. 12.487–12.496. https://doi.org/10.1029/2018GL079773
- Miettinen A., Divine D.V., Husum K. et al. Exceptional ocean surface conditions on the SE Greenland shelf during the Medieval Climate Anomaly // Paleoceanography. 2015. V. 30. P. 1657–1674. https://doi.org/10.1002/2015PA002849
- North Greenland Ice Core Project (NGRIP) members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period // Nature. 2004. V. 431. № 7005. P. 147–151. http://dx.doi.org/10.1038/nature02805
- Ólafsdóttir S., Jennings A.E., Geirsdóttir A. et al. Holocene variability of the North Atlantic Irminger current on the south- and northwest shelf of Iceland // Marine Micropaleontology. 2010. V. 77 (3–4). P. 101–118. https://doi.org/10.1016/j.marmicro.2010.08.002
- Pados T., Spielhagen R.F. Species distribution and depth habitat of recent planktic foraminifera in Fram Strait, Arctic Ocean // Polar Research. 2014. V. 33. 22483. https://doi.org/10.3402/polar.v33.22483
- Ren J., Gersonde R., Esper O., Sancetta C. Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables // Palaeogeography, Palaeoclimatology, Palaeoecology. 2014. V. 402. P. 81–103. https://doi.org/10.1016/j.palaeo.2014.03.008
- Rickaby R.E.M., Elderfield H. Evidence from the high-latitude North Atlantic for variations in Antarctic Intermediate water flow during the last deglaciation // Geochemistry, Geophysics, Geosystems. 2005. V. 6. Q05001. https://doi.org/10.1029/2004GC000858
- Rohling E.J., Pälike H. Centennial-scale climate cooling with a sudden cold event around 8.200 years ago // Nature. 2005. V. 434. P. 975–979. https://doi.org/10.1038/nature03421
- Sahoo N., Saalim S.M., Matul A. et al. Planktic Foraminiferal Assemblages in Surface Sediments From the Subpolar North Atlantic Ocean // Frontiers in Marine Science. 2022. V. 8. 781675. https://doi.org/10.3389/fmars.2021.781675
- Schlitzer R. Ocean Data View [online]. 2021. Available at: o.tv.awi.de [Accessed on 25.03.2025].
- Sejnup H.P., Seppä H., McKay N.P. et al. North Atlantic-Fennoscandian Holocene climate trends and mechanisms // Quaternary Science Reviews. 2016. V. 147. P. 365–378. https://doi.org/10.1016/j.quascirev.2016.06.005
- Sieger R., Grobe H. PanTool – A Swiss Army Knife for Data Conversion and Recalculation [online]. 2025. Available at: https://doi.org/10.1594/PANGAEA.787549. [Accessed on 25.03.2025].
- Stuiver M., Reimer P.J. Extended 14C data base and revised CALIB3.0 14C age calibration program (CALIB rev. 8) // Radiocarbon. 1993. V. 35. P. 215–230. https://doi.org/10.1017/S0033822200013904
- Thomas E.R., Wolff E.W., Mulvaney R. et al. The 8.2ka event from Greenland ice cores // Quaternary Science Reviews. 2007. V. 26. Is. 1–2. P. 70–81. https://doi.org/10.1016/j.quascirev.2006.07.017
- Thornalley D.J.R., Elderfield H., McCave I.N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic // Nature. 2009. V. 457. P. 711–714. https://doi.org/10.1038/nature07717
- Tzedakis P.C., Drysdale R.N., Margari V., et al. Enhanced climate instability in the North Atlantic and southern Europe during the Last Interglacial // Nature Communications. 2018. V. 9 (1). 4235. https://doi.org/10.1038/s41467-018-06683-3
- Våge K., Pickart R.S., Sarafanov A. et al. The Irminger Gyre: Circulation, convection, and interannual variability // Deep-Sea Research I. 2011. V. 58. P. 590–614. https://doi.org/10.1016/j.dsr.2011.03.001
- Witkowski J., Edgar K., Harding I. et al. Marine Microfossils // Encyclopedia of Marine Geosciences / J. Harff, M. Meschede, S. Petersen, J. Thiede (eds.). Dordrecht, Netherlands: Springer, 2015. https://doi.org/10.1007/978-94-007-6644-0_73-1
Arquivos suplementares
