Distribution and Variations of Elemental Sulfur in the Upper Part of the Black Sea Anoxic Water Column

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Elemental sulfur and its derivatives polysulfides play a key role in the processes of hydrogen sulfide oxidation in anoxic basins. Having low solubility, elemental sulfur is mainly represented by suspended forms. However, in sulfide waters it forms highly soluble polysulfides. This work is devoted to the study of elemental sulfur and polysulfides in the upper part of the Black Sea anoxic zone in 2017–2019 and 2022 at stations located on the continental shelf off the coast of the Caucasus and Crimea. Sampling, filtering and determination of sulfur were carried out under strictly anaerobic conditions in an argon atmosphere.

The concentration of elemental sulfur (together with polysulfides) increases with depth and with an increase in the content of hydrogen sulfide from 0.01 in the area of the redox interface to 0.67 µmol/kg at a depth of 600 m. The fraction of elemental sulfur in the composition of ZVS is 23 ± 5%. The calculation of the polysulfides concentration in equilibrium with suspended sulfur based on thermodynamic data shows that deeper than 20–25 m of the upper boundary of the anoxic zone, their concentration was higher than ZVS and at a depth of 600 m they differed by about 3 times. The predominance of elemental sulfur over sulfide sulfur in the composition of polysulfides in the anoxic zone at depths of 450 and 600 m can be the reason for the fractionation of its isotopic composition by +2.2‰ relative to the sulfur of dissolved sulfide (-41.0‰ VCDT).

About the authors

A. V. Dubinin

Shirshov Institute of Oceanology, Russian Academy of Sciences

Author for correspondence.
Email: dubinin@ocean.ru
Russian Federation, Moscow

T. P. Demidova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: dubinin@ocean.ru
Russian Federation, Moscow

O. A. Ocherednik

Southern Branch of the Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: dubinin@ocean.ru
Russian Federation, Gelendzhik

L. S. Semilova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: dubinin@ocean.ru
Russian Federation, Moscow

M. N. Rimskaya-Korsakova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: dubinin@ocean.ru
Russian Federation, Moscow

E. D. Berezhnaya

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: dubinin@ocean.ru
Russian Federation, Moscow

E. N. Zologina

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: dubinin@ocean.ru
Russian Federation, Moscow

References

  1. Дубинин А.В., Демидова Т.П., Кременецкий В.В. и др. Определение восстановленных форм серы в анаэробной зоне Черного моря: сравнение методов спектрофотометрии и иодометрии // Океанология. 2012. Т. 52. № 2. С. 200–209.
  2. Дубинин А.В., Демидова Т.П., Римская-Корсакова М.Н. и др. Определение восстановленных форм серы в воде анаэробных бассейнов // Морской гидрофизический журнал. 2019. Т. 35. № 1. C. 37–51. https://doi.org/10.22449/0233-7584-2019-1-37-51
  3. Дубинин А.В., Демидова Т.П., Семилова Л.С. и др. Элементная сера и ее изотопный состав в воде Черного моря // Доклады РАН. Науки о Земле. 2023. Т. 511. № 1. С. 24–30. https://doi.org/10.31857/S2686739723600480
  4. Дубинин А.В., Дубинина Е.О. Изотопный состав кислорода и водорода вод Черного моря как отражение динамики водных масс // Океанология. 2014. № 6. С. 763–780.
  5. Попов Н.И., Федоров К.Н., Орлов В.М. Морская вода (справочное руководство). М: Наука, 1979. 327 с.
  6. Якушев Е.В., Виноградова Е.Л., Дубинин А.В. и др. Об определении низких концентраций кислорода методом Винклера // Океанология. 2012. № 1. С. 131–138.
  7. Amrani A., Kamyshny A., Lev O. et al. Sulfur Stable Isotope Distribution of Polysulfide Anions in an (NH4)2Sn Aqueous Solution // Inorg. Chem. 2006. V. 45. P. 1427–1429. https://doi.org/10.1021/ic051748r
  8. Avetisyan K., Kamyshny Jr. A. Thermodynamic constants of formation of disulfide anion in aqueous solutions // Geochim. Cosmochim. Acta. 2022. V. 325. P. 205–213. https://doi.org/10.1016/j.gca.2022.02.03
  9. Avetisyan K., Zweig I., Luther G.W. et al. Kinetics and mechanism of polysulfides and elemental sulfur formation by a reaction between hydrogen sulfide and δ-MnO2 // Geochim. Cosmochim. Acta. 2021. V. 313. P. 21–37. https://doi.org/10.1016/j.gca.2021.08.022
  10. Canfield D.E. Biogeochemistry of sulfur isotopes // In: Valley J.W., Cole D.R. (Eds.). Stable isotope geochemistry. Berlin, Boston: De Gruyter, 2001. P.607-636.
  11. Dubinin A.V., Demidova T.P., Dubinina E.O. et al. Sinking particles in the Black Sea Waters: Vertical Fluxes of Elements and Pyrite to the Bottom, Isotopic Composition of Pyrite Sulfur, and Hydrogen Sulfide Production // Chemical Geology. 2022. P. 606. https://doi.org/10.1016/j.chemgeo.2022.120996
  12. Findlay A.J., Gartman A., MacDonald D. J. et al . Distribution and size fractionation of elemental sulfur in aqueous environments: The Chesapeake Bay and Mid-Atlantic Ridge // Geochim. Cosmochim. Acta. 2014. V. 142. P. 334–348. http://dx.doi.org/10.1016/j.gca.2014.07.032
  13. Gröger J., Franke J., Hamer K. et al. Quantitative Recovery of Elemental Sulfur and Improved Selectivity in a Chromium-Reducible Sulfur Distillation // Geostandards and Geoanalytical Research. 2009. V. 33. № 1. P. 17–27.
  14. Helz G. Activity of zero-valent sulfur in sulfidic natural waters // Geochem Trans. 2014. V. 15. P. 38–58.
  15. Henkel J.V., Dellwig O., Pollehne F. et al. A bacterial isolate from the Black Sea oxidizes sulfide with manganese (IV) oxide // Proceedings of the National Academy of Sciences (PNAS). 2019. V. 116. № 25. P. 12153–12155.
  16. Jørgensen B.B., Fossing H., Wirsen C.O. et al. Sulfide oxidation in the anoxic Black Sea chemocline // Deep Sea Research Part A. Oceanographic Research Papers, Black Sea Oceanography: Results from the 1988 Black Sea Expedition 38, 1991. P. S1083–S1103.
  17. Kaiser D., Konovalov S., Schulz-Bull D.E. et al. Organic matter along longitudinal and vertical gradients in the Black Sea // Deep Sea Research Part I: Oceanographic Research Papers. 2017. V. 129. P. 22–31. https://doi.org/10.1016/j.dsr.2017.09.006
  18. Kamyshny Jr A. Solubility of cyclooctasulfur in pure water and sea water at different temperatures // Geochim. Cosmochim. Acta. 2009. V. 73. P. 6022–6028.
  19. Kamyshny Jr A., Gun J., Rizkov D. et al. Equilibrium distribution of polysulfide ions in aqueous solutions at different temperatures by rapid single-phase derivatization // Environ. Sci. Technol. 2007. V. 41. P. 2395–2400.
  20. Kamyshny Jr A., Zilberbrand M., Elkeltchik I. et al. Speciation of polysulfides and zerovalent sulfur in sulfide-rich water wells in southern and central Israel // Aquatic Geochem. 2008. V. 14. P. 171–192.
  21. Konovalov S.K., Luther G.I.W., Friederich G.E. et al. Lateral injection of oxygen with the Bosporus plume—fingers of oxidizing potential in the Black Sea // Limnology and Oceanography. 2003. V. 48. P. 2369–2376. https://doi.org/10.4319/lo.2003.48.6.2369
  22. Li X., Cutter G.A., Thunell R.C. et al. Particulate sulfur species in the water column of the Cariaco Basin // Geochim. Cosmochim. Acta. 2011. V. 75. P. 148–163. https://doi.org/10.1016/j.gca.2010.09.039
  23. Luther III G.W., Church T.M., Powell D. Sulfur speciation and sulfide oxidation in the water column of the Black Sea // Deep Sea Research Part A. Oceanographic Research Papers, Black Sea Oceanography: Results from the 1988 Black Sea Expedition. 1991. V. 38. P. S1121–S1137. https://doi.org/10.1016/S0198-0149(10)80027-5
  24. Marschall E., Jogler M., Henßge U. et al. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea // Environmental Microbiology. 2010. V. 12. N. 5. P. 1348–1362.
  25. Volkov I.I., Neretin L.N. Hydrogen Sulfide in the Black Sea // In: Kostianoy A.G., Kosarev A.N. (Eds.). The Black Sea Environment, The Handbook of Environmental Chemistry. Berlin, Heidelberg: Springer, 2008. P. 309–331. https://doi.org/10.1007/698_5_083
  26. Zerkle A.L., Farquar J., Johnston D.T. et al. Fractionation of multiple sulfur isotopes during phototrophic oxidation of sulfide and elemental sulfur by a green sulfur bacterium // Geochim. Cosmochim. Acta. 2009. V. 73. P. 291–306.
  27. Zopfi J., Ferdelman T.G., Fossing H. Distribution and fate of sulfur intermediates — sulfite, tetrathionate, thiosulfate, and elemental sulfur — in marine sediments // In: Amend J.P. et al (Eds.) Sulfur biogeochemistry—Past and present. Geological Society of America Special Paper. Boulder, Colorado. 2004. V. 379. P. 97–116.

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies