Cracking of Heavy Oil in Supercritical Water in the Presence of Iron Oxide Nanopowder: Asphaltene Transformations and Process Kinetics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The products of catalytic cracking of heavy crude oil from the Ashalchinskoye oil field (the Almetyevsk district of the Republic of Tatarstan, Russia) were characterized. The effects of a Fe2O3 nanopowder catalyst and the presence of supercritical water (SCW) on the composition and structure of these cracking products were investigated. Cracking over 0.01 wt % Fe2O3 nanopowder in a SCW environment was found to enhance the yield of distillates by more than 34 wt % and to reduce the content of resinous asphaltene materials by a factor of 2.1 compared to the initial crude oil. It was further shown that Fe2O3-nanopowder-catalyzed cracking produces coke-like asphaltenes with a low H/C atomic ratio (no higher than 0.75). Reaction rate constants were evaluated for the thermal and catalytic cracking of the heavy oil from the Ashalchinskoye field.

About the authors

N. N. Sviridenko

Institute of Petroleum Chemistry, Siberian Branch of Russian Academy of Sciences (IPC SB RAS)

Author for correspondence.
Email: nikita26sviridenko@gmail.com
634055, Tomsk, Russia

References

  1. Canıaz R.O., Arca S., Yaşar M., Erkey C. Refinery bitumen and domestic unconventional heavy oil upgrading in supercritical water // J. of Supercritical Fluids. 2019. V. 152. I. 104569. https://doi.org/10.1016/j.supflu.2019.104569
  2. Yakubov M., Abilova G., Tazeeva E., Yakubova S., Tazeev D., Mironov N., Milordov D.A. Comparative analysis of vanadyl porphyrins isolated from resins of heavy oils with high and low vanadium content // Processes. 2021. V. 9. I. 2235. https://doi.org/10.3390/pr9122235
  3. Antipenko V.R., Grinko A.A. Parameters of macrostructure of insoluble products obtained by thermolysis of resins and asphaltenes of the Usinskaya oil // Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2021. V. 332. P. 123-131. https://doi.org/10.18799/24131830/2021/04/3155
  4. Korneev D.S., Pevneva G.S., Golovko A.K. Thermal transformations of asphaltenes at a temperature of 120°C // J. of Siberian Federal University. Chemistry. 2019. V. 12. P. 101-117. https://doi.org/10.17516/1998-2836-0110
  5. Chen X., Li T., Xin L., Yang Y., Shan H., Yang C. Inductive effect of basic nitrogen compounds on coke formation during the catalytic cracking process // Catalysis Communications. 2016. V. 74. P. 95-98. https://doi.org/10.1016/j.catcom.2015.11.008
  6. Nal'gieva Kh.V., Kopytov M.A. Study of the thermolysis products of asphaltenes from the vacuum residue of Usinskoe oil produced in supercritical water // Solid Fuel Chemistry. 2022. V. 56. P. 116-122. https://doi.org/10.3103/S0361521922020070
  7. Hosseinpour M., Soltani M., Noofeli A., Nathwani J. An Optimization study on heavy oil upgrading in supercritical water through the response surface methodology (RSM) // Fuel. 2020. V. 271. I. 117618. https://doi.org/10.1016/j.fuel.2020.117618
  8. Eletskii P.M., Sosnin G.A., Zaikina O.O., Kukushkin R.G., Yakovlev V.A. Heavy oil upgrading in the presence of water // J. of Siberian Federal University. Chemistry. 2017. V. 10. № 4. P. 545-572. https://doi.org/10.17516/1998-2836-0048
  9. Eletskii P.M., Mironenko O.O., Kukushkin R.G., Sosnin G.A., Yakovlev V.A. Catalytic steam cracking of heavy oil feedstocks: a review // Catalysis in Industry. 2018. V. 10. № 3. P. 185-201. https://doi.org/10.1134/S2070050418030042
  10. Chao K., Chen Y., Li J., Zhang X., Dong B. Upgrading and visbreaking of super-heavy oil by catalytic aquathermolysis with aromatic sulfonic copper // Fuel Processing Technology. 2012. V. 104. P. 174-180. https://doi.org/10.1016/j.fuproc.2012.05.010
  11. Sosnin G.A., Zaikina O.O., Eletskii P.M., Yakovlev V.A. Catalytic steam cracking of vacuum residue in presence of dispersed catalysts based on Mo, Ni, Fe, Co, Al metals // Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering. 2018. V. 329. № 12. P. 145-154. https://doi.org/10.18799/24131830/2018/12/30
  12. Urazov K.K., Sviridenko N.N., Iovik Y.A., Kolobova E.N., Grabchenko M.V., Kurzina I.A., Mukhamatdinov I.I. Effect of hydrogen-donor of heavy crude oil catalytic aquathermolysis in the presence of a nickel-based catalyst // Catalysts. 2022. V. 12. I. 1154. https://doi.org/10.3390/catal12101154
  13. Vilcaez J., Watanabe M., Watanabe N., Kishita A., Adschiri T. Hydrothermal extractive upgrading of bitumen without coke formation // Fuel. 2012. V. 102. P. 379-385. https://doi.org/10.1016/j.fuel.2012.07.024
  14. Sato T., Mori S., Watanabe M., Sasaki M., Itoh N. Upgrading of bitumen with formic acid in supercritical water // J. of Supercritical Fluids. 2010. V. 55. P. 232-240. https://doi.org/10.1016/j.supflu.2010.07.010
  15. Vakhin A.V., Aliev F.A., Mukhamatdinov I.I., Sitnov S.A., Kudryashov S.I., Afanasiev I.S., Petrashov O.V., Nurgaliev D.K. Extra-heavy oil aquathermolysis using nickel-based catalyst: some aspects of in situ transformation of catalyst precursor // Catalysts. 2021. V. 11. № 2. P. 189. https://doi.org/10.3390/catal11020189
  16. Chen Q., Liu Y., Zhao J. Intensified viscosity reduction of heavy oil by using reservoir minerals and chemical agents in aquathermolysis // Advanced Materials Research. 2011. V. 236-238. P. 839-843. https://doi.org/10.4028/www.scientific.net/AMR.236-238.839
  17. Suwaid M.A., Varfolomeev M.A., Al-Muntaser A.A., Abdaljalil N.I., Djimasbe R., Rodionov N.O., Zinnatullin A., Vagizov F.G. Using the oil-soluble copper-based catalysts with different organic ligands for in-situ catalytic upgrading of heavy oil // Fuel. 2022. V. 312. I. 122914. https://doi.org/10.1016/j.fuel.2021.122914
  18. Petrukhina N.N., Kayukova G.P., Romanov G.V., Tumanyan B.P., Foss L.E., Kosachev I.P., Musin R.Z., Ramazanova A.I., Vakhin A.V. Conversion processes for high-viscosity heavy crude oil in catalytic and noncatalytic aquathermolysis // Chemistry and Technology of Fuels and Oils. 2014. V. 50. P. 315-326. https://doi.org/10.1007/s10553-014-0528-y
  19. Кривцов Е.Б., Свириденко Н.Н., Головко А.К. Инициированный крекинга природного битума для увеличения выхода дистиллятных фракций // Изв. Томского политехнического ун-та. 2013. Т. 323. № 3. С. 37-42.
  20. Дмитриев Д.Е., Головко А.К. Превращение смол и асфальтенов при термической обработке тяжелых нефтей // Нефтехимия. 2010. Т. 50. № 2. С. 118-125
  21. Dmitriev D.E., Golovko A.K. Transformations of resins and asphaltenes during the thermal treatment of heavy oils // Petrol. Chemistry. 2010. V. 50. P. 106-113. https://doi.org/10.1134/S0965544110020040.
  22. Fedyaeva O.N., Vostrikov A.A. The products of heavy sulfur-rich oil conversion in a counter supercritical water flow and their desulfurization by ZnO nanoparticles // J. of Supercritical Fluids. 2016. V. 111. P. 121-128. https://doi.org/10.1016/j.supflu.2016.01.020
  23. Hosseinpour M., Fatemi S., Ahmadi S.J., Morimoto M., Akizuki M., Oshima Y., Fumoto E. The synergistic effect between supercritical water and redox properties of iron oxide nanoparticles for in situ catalytic upgrading heavy oil with formic acid. isotopic study // Applied Catalysis B: Environmental. 2018. V. 230. P. 91-101. https://doi.org/10.1016/j.apcatb.2018.02.030
  24. Chen Y., Wang K., Yang J.-Y., Yuan P.-Q., Cheng Z.-M., Yuan W.-K. Dealkylation of aromatics in subcritical and supercritical water: involvement of carbonium mechanism // Industrial & Engineering Chemistry Research. 2016. V. 55. P. 9578-9585. https://doi.org/10.1021/acs.iecr.6b02323
  25. Chibiryaev A.M., Kozhevnikov I.V., Martyanov O.N. Transformation of petroleum asphaltenes in supercritical alcohols - а tool to change H/C ratio and remove S- and N-atoms from refined products // Catalysis Today. 2019. V. 329. P. 177-186. https://doi.org/10.1016/j.cattod.2018.10.066
  26. Esfahani F.T., Ehsni M.R., Ivakpour J. A kinetic model for delayed coking process of Iranian vacuum residues // Petrol. Science and Technology. 2019. V. 37. № 19. P. 2049-2057. https://doi.org/10.1080/10916466.2018.1482323
  27. Кривцов Е.Б., Гончаров А.В. Влияние добавок стирола на кинетику крекинга компонетнов высокосернистого гудрона // Нефтехимия. 2020. Т. 60. № 3. С. 394-400. https://doi.org/10.31857/S0028242120030119
  28. Krivtsov E.B., Goncharov A.V. Effect of Styrene Additives on the Cracking Kinetics of Components of High-Sulfur Vacuum Residue. // Petrol. Chemistry. 2020. V. 60. P. 358-364. https://doi.org/10.1134/S0965544120030111.
  29. Al-muntaser A.A., Varfolomeev M.A., Suwai M.A., Feoktistov D.A., Yuan C., Klimovitskii A.E., Gareev B.I., Djimasbe R., Nurgaliev D.K., Kudryashov S.I., Egorova E.V., Fomkin A.V., Petrashov O.V., Afanasiev I.S., Fedorchenko G.D. Hydrogen donating capacity of water in catalytic and non-catalytic aquathermolysis of extra-heavy oil: deuterium tracing study // Fuel. 2021. V. 283. I. 118957. https://doi.org/10.1016/j.fuel.2020.118957
  30. Sviridenko N.N., Akimov A.S. Structural changes of asphaltenes during cracking in supercritical water in the presence of disperse catalysts // J. of Supercritical Fluids. 2023. V. 192. I. 105784. https://doi.org/10.1016/j.supflu.2022.105784
  31. Hosseinpour M., Fatemi S., Ahmadi S.J. Deuterium tracing study of unsaturated aliphatics hydrogenation by supercritical water in upgrading heavy oil. Part II: Hydrogen donating capacity of water in the presence of iron(III) oxide nanocatalyst // J. of Supercritical Fluids. 2016. V. 110. P. 75-82. https://doi.org/10.1016/j.supflu.2015.12.014

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies