Transcriptomic profile of trastuzumab-resistant breast cancer cell line BT-474

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The development of resistance to trastuzumab in HER2-positive breast cancer is a serious clinical problem that limits the effectiveness of targeted therapy. In a significant proportion of patients, the mechanisms of resistance development remain poorly understood. The BT-474 cell line was selected as an optimal model for the study because it represents a HER2-positive luminal B subtype breast cancer cell line. To identify molecular mechanisms of resistance, a comprehensive transcriptomic analysis based on RNA-seq data comparison of three independent datasets including both sensitive and trastuzumab-resistant variants was applied. The methodological approach included multi-step bioinformatics analysis followed by identification of regulatory interactions. The study identified genes with increased expression (FUCA2, HSPE1, SHLD1, NMD3) and genes with decreased expression (GPC5, FSTL1, ATG16L2, POLD2) in resistant cells. Key transcription factors (E2F1, MYC, YBX1, HEY1, NFIC, TFAP2A, AP-1/JUN, NCOA1) regulating the expression of the detected genes during resistance development were identified. The identified changes indicate a complex reprogramming of transcriptional activity affecting cell cycle processes, DNA repair, metabolism, and epithelial-mesenchymal transition. The findings expand the understanding of the molecular mechanisms of trastuzumab resistance and open prospects for the development of novel therapeutic strategies to overcome drug resistance in HER2-positive breast cancer.

Sobre autores

S. Shifon

Novosibirsk National Research State University

Email: s.shsherbakova@g.nsu.ru
Novosibirsk, 630090 Russia

I. Karpets

Novosibirsk National Research State University

Novosibirsk, 630090 Russia

A. Chesnokova

Novosibirsk National Research State University

Novosibirsk, 630090 Russia

P. Karitskaya

Novosibirsk National Research State University

Novosibirsk, 630090 Russia

E. Ukladov

Novosibirsk National Research State University

Novosibirsk, 630090 Russia

I. Evgenov

Novosibirsk National Research State University

Novosibirsk, 630090 Russia

S. Sidorov

Novosibirsk National Research State University; City Clinical Hospital No. 1

Novosibirsk, 630090 Russia; Novosibirsk, 630047 Russia

L. Gulyaeva

Novosibirsk National Research State University; Research Institute of Molecular Biology and Biophysics

Email: lfgulyaeva@gmail.com
Novosibirsk, 630090 Russia; Novosibirsk, 630060 Russia

Bibliografia

  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249. https://doi.org/10.3322/caac.21660
  2. Perou C.M., Sørlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J R., Ross D.T., Johnsen H., Akslen L.A., Fluge O., Pergamenschikov A., Williams C., Zhu S.X., Lønning P.E., Børresen-Dale A.L., Brown P.O., Botstein D. (2000) Molecular portraits of human breast tumours. Nature. 406(6797), 747–752. https://doi.org/10.1038/35021093
  3. Loibl S., Gianni L. (2017) HER2-positive breast cancer. Lancet. 389(10087), 2415–2429. https://doi.org/10.1016/S0140-6736(16)32417-5
  4. Baselga J., Cortés J., Kim S.B., Im S.A., Hegg R., Im Y.H., Roman L., Pedrini J.L., Pienkowski T., Knott A., Clark E., Benyunes M.C., Ross G., Swain S.M., CLEOPATRA Study Group (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. New Engl. J. Med. 366(2), 109–119. https://doi.org/10.1056/NEJMoa1113216
  5. Nahta R., Yu D., Hung M.C., Hortobagyi G.N., Esteva F.J. (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat. Clin. Practice. Oncol. 3(5), 269–280. https://doi.org/10.1038/ncponc0509
  6. Nagata Y., Lan K.H., Zhou X., Tan M., Esteva F.J., Sahin A.A., Klos K.S., Li P., Monia B.P., Nguyen N.T., Hortobagyi G.N., Hung M.C., Yu D. (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 6(2), 117–127. https://doi.org/10.1016/j.ccr.2004.06.022
  7. Korkaya H., Wicha M.S. (2013) HER2 and breast cancer stem cells: more than meets the eye. Cancer Res. 73(12), 3489–3493. https://doi.org/10.1158/0008-5472.CAN-13-0260
  8. Vasan N., Baselga J., Hyman D.M. (2019) A view on drug resistance in cancer. Nature. 575(7782), 299–309. https://doi.org/10.1038/s41586-019-1730-1
  9. Salgia R., Kulkarni P. (2018) The Genetic/Non-genetic Duality of Drug ‘Resistance’ in Cancer. Trends Cancer. 4(2), 110–118. https://doi.org/10.1016/j.trecan.2018.01.001
  10. Lasfargues E.Y., Coutinho W.G., Redfield E.S. (1978) Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J. Natl. Cancer Institute. 61(4), 967–978. https://doi.org/10.1093/jnci/61.4.967
  11. Gale M., Li Y., Cao J., Liu Z.Z., Holmbeck M.A., Zhang M., Lang S.M., Wu L., Do Carmo M., Gupta S., Aoshima K., DiGiovanna M.P., Stern D.F., Rimm D.L., Shadel G.S., Chen X., Yan Q. (2020) Acquired resistance to HER2-targeted therapies creates vulnerability to ATP synthase inhibition. Cancer Res. 80(3), 524–535. https://doi.org/10.1158/0008-5472.CAN-18-3985
  12. von der Heyde S., Wagner S., Czerny A., Nietert M., Ludewig F., Salinas-Riester G., Arlt D., Beißbarth T. (2015) mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer, PloS One. 10(2), e0117818. https://doi.org/10.1371/journal.pone.0117818
  13. van Slooten H.J., Bonsing B.A., Hiller A.J., Colbern G.T., van Dierendonck J.H., Cornelisse C.J., Smith H.S. (1995) Outgrowth of BT-474 human breast cancer cells in immune-deficient mice: a new in vivo model for hormone-dependent breast cancer. Br. J. Cancer. 72(1), 22–30. https://doi.org/10.1038/bjc.1995.271
  14. Andrews S. (2010) FastQC: a quality control tool for high throughput sequence data, available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on [2024])
  15. Bray N.L., Pimentel H., Melsted P., Pachter L. (2016) Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527. https://doi.org/10.1038/nbt.3519
  16. Evangelista J.E., Xie Z., Marino G.B., Nguyen N., Clarke D.J.B., Ma’ayan A. (2023) Enrichr-KG: bridging enrichment analysis across multiple libraries, Nucleic Acids Res. 51(W1), W168–W179. https://doi.org/10.1093/nar/gkad393
  17. De Siervi A., De Luca P., Byun J.S., Di L.J., Fufa T., Haggerty C.M., Vazquez E., Moiola C., Longo D.L., Gardner K. (2010) Transcriptional autoregulation by BRCA1. Cancer Res. 70(2), 532–542. https://doi.org/10.1158/0008-5472.CAN-09-1477
  18. Pashaei E., Guzel E., Ozgurses M.E., Demirel G., Aydin N., Ozen M. (2016) A meta-analysis: identification of common Mir-145 target genes that have similar behavior in different GEO datasets. PloS One. 11(9), e0161491. https://doi.org/10.1371/journal.pone.0161491
  19. Liu Q., Dong H.T., Zhao T., Yao F., Xu Y., Chen B., Wu Y., Jin F., Xing P. (2022) Cancer-associated adipocytes release FUCA2 to promote aggressiveness in TNBC. Endocr. Relat. Cancer. 29(3), 139–149. https://doi.org/10.1530/ERC-21-0243
  20. Chu S., Wen Q., Qing Z., Luo J., Wang W., Chen L., Feng J., Xu L., Zang H., Fan S. (2017) High expression of heat shock protein 10 correlates negatively with estrogen/progesterone receptor status and predicts poor prognosis in invasive ductal breast carcinoma, Human Pathol. 61, 173–180. https://doi.org/10.1016/j.humpath.2016.09.039
  21. Zoppino F.C.M., Guerrero-Gimenez M.E., Castro G.N., Ciocca D.R. (2018) Comprehensive transcriptomic analysis of heat shock proteins in the molecular subtypes of human breast cancer. BMC Cancer. 18 (1), 700. https://doi.org/10.1186/s12885-018-4621-1
  22. Dev H., Chiang T.W., Lescale C., de Krijger I., Martin A.G., Pilger D., Coates J., Sczaniecka-Clift M., Wei W., Ostermaier M., Herzog M., Lam J., Shea A., Demir M., Wu Q., Yang F., Fu B., Lai Z., Balmus G., Belotserkovskaya R., Serra V., O’Connor M.J., Bruna A., Beli P., Pellegrini L., Caldas C., Deriano L., Jacobs J.J.L., Galanty Y., Jackson S.P. (2018) Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat. Cell Biol. 20(8), 954–965. https://doi.org/10.1038/s41556-018-0140-1
  23. Mirman Z., Sasi N.K., King A., Chapman J.R., de Lange Т. (2022) 53BP1–shieldin-dependent DSB processing in BRCA1-deficient cells requires CST–Polα–primase fill-in synthesis. Nat. Cell Biol. 24, 51–61. https://doi.org/10.1038/s41556-021-00812-9
  24. Sommer A.K., Hermawan A., Ljepoja B., Fröhlich T., Arnold G.J., Wagner E., Roidl A. (2018) A proteomic analysis of chemoresistance development via sequential treatment with doxorubicin reveals novel players in MCF-7 breast cancer cells. Int. J. Mol. Med.42 (4), 1987–1997. https://doi.org/10.3892/ijmm.2018.3781.
  25. Sommer A.-K. (2021) Development of chemoresistance and formation of metastases: New aspects of two major obstacles in breast cancer treatment (2021). Doctoral dissertation. LMU München: Faculty of Chemistry and Pharmacy. https://doi.org/10.5282/edoc.28067
  26. Grillo P.K., Győrffy B., Götte M. (2021) Prognostic impact of the glypican family of heparan sulfate proteoglycans on the survival of breast cancer patients. J. Cancer Res. Clin. Oncol. 147(7), 1937–1955. https://doi.org/10.1007/s00432-021-03597-4
  27. Li Y., Yang P. (2011) GPC5 gene and its related pathways in lung cancer. J. Thorac. Oncol. 6(1), 2–5. https://doi.org/10.1097/JTO.0b013e3181fd6b04
  28. Matsuda K., Maruyama H., Guo F., Kleeff J., Itakura J., Matsumoto Y., Lander A.D., Korc M. (2001) Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res. 61(14), 5562–5569.
  29. Yuan S., Yu Z., Liu Q., Zhang M., Xiang Y., Wu N., Wu L., Hu Z., Xu B., Cai T., Ma X., Zhang Y., Liao C., Wang L., Yang P., Bai L., Li Y. (2016) GPC5, a novel epigenetically silenced tumor suppressor, inhibits tumor growth by suppressing Wnt/β-catenin signaling in lung adenocarcinoma. Oncogene. 35(47), 6120–6131. https://doi.org/10.1038/onc.2016.149
  30. Sun Y., Xu K., He M., Fan G., Lu H. (2018) Overexpression of glypican 5 (GPC5) inhibits prostate cancer cell proliferation and invasion via suppressing Sp1-mediated EMT and activation of Wnt/β-catenin signaling. Oncol. Res. 26(4), 565–572. https://doi.org/10.3727/096504017X15044461944385
  31. Zheng X., Qi C., Zhang S., Fang Y., Ning W. (2017) TGF-β1 induces Fstl1 via the Smad3-c-Jun pathway in lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 313(2), L240–L251. https://doi.org/10.1152/ajplung.00523.2016
  32. Liu Y.-K., Jia Y.-J., Liu S.-H., Ma J. (2021) FSTL1 increases cisplatin sensitivity in epithelial ovarian cancer cells by inhibition of NF-κB pathway. Cancer Chemother. Pharmacol. 87(3), 405–414. https://doi.org/10.1007/s00280-020-04215-9
  33. Cheng S., Huang Y., Lou C., He Y., Zhang Y., Zhang Q. (2019) FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol. Ther. 20(3), 328–337. https://doi.org/10.1080/15384047.2018.1529101
  34. Yang Y., Lu T., Ji, X., Gao Y. (2023) FSTL1 suppresses triple-negative breast cancer lung metastasis by inhibiting M2-like tumor-associated macrophage recruitment toward the lungs. Diagnostics (Basel). 13(10), 1724. https://doi.org/10.3390/diagnostics13101724
  35. Ma J., Yang Y., Wang L., Jia X., Lu T., Zeng Y., Liu L., Gao Y. (2021) Follistatin-like 1 deficiency impairs T cell development to promote lung metastasis of triple negative breast cancer. Aging. 13(5), 7211–7227. https://doi.org/10.18632/aging.202579
  36. An J., Wang L., Zhao Y., Hao Q., Zhang Y., Zhang J., Yang C., Liu L., Wang W., Fang D., Lu T., Gao Y. (2017) Effects of FSTL1 on cell proliferation in breast cancer cell line MDA-MB-231 and its brain metastatic variant MDA-MB-231-BR. Oncol. Rep. 38(5), 3001–3010. https://doi.org/10.3892/or.2017.6004
  37. Jin T., Zhang Y., Zhang T. (2020) MiR-524–5p suppresses migration, invasion, and EMT progression in breast cancer cells through targeting FSTL1. Cancer Biother. Radiopharm. 35(10), 789–801. https://doi.org/10.1089/cbr.2019.3046
  38. Luu L.D.W., Kaakoush N.O., Castaño-Rodríguez N. (2022) The role of ATG16L2 in autophagy and disease. Autophagy. 18(11), 2537‒2546. https://doi.org/10.1080/15548627.2022.2042783
  39. Shen M., Duan W.-M., Wu M.-Y., Wang W.-J., Liu L., Xu M.-D., Zhu J., Li D.-M., Gui Q., Lian L., Gong F.-R., Chen K., Li W., Tao M. (2015) Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol. Rep. 34(1), 359‒367. https://doi.org/10.3892/or.2015.4005
  40. Zhang Z. (2022) POLD2 is activated by E2F1 to promote triple-negative breast cancer proliferation. Front. Oncol. 12, 981329. https://doi.org/10.3389/fonc.2022.981329
  41. Katsuta E., Opyrchal M. (2023) Editorial: Novel signaling pathways and therapy in breast cancer. Front. Oncol. 13, 1215023. https://doi.org/10.3389/fonc.2023.1215023
  42. Chen F., Wang Q., Yu X., Yang N., Wang Y., Zeng Y., Zheng Z., Zhou F., Zhou Y. (2021) MCPIP1-mediated NFIC alternative splicing inhibits proliferation of triple-negative breast cancer via cyclin D1-Rb-E2F1 axis. Cell Death Dis. 12(4), 370. https://doi.org/10.1038/s41419-021-03661-4
  43. Fang Y., Wang Y., Ma H., Guo Y., Xu R., Chen X., Chen X., Lv Y., Li P., Gao Y. (2024) TFAP2A downregulation mediates tumor-suppressive effect of miR-8072 in triple-negative breast cancer via inhibiting SNAI1 transcription. Br. Cancer Res. 26, 103. https://doi.org/10.1186/s13058-024-01858-x
  44. Altundag K., Altundag O., Gunduz M., Arun B. (2004) Possible interaction between activator protein-1 and proto-oncogene B-cell lymphoma gene 6 in breast cancer patients resistant to tamoxifen. Med. Hypotheses. 63(5), 823‒826. https://doi.org/10.1016/j.mehy.2004.03.026
  45. Ding K., Li W., Zou Z., Zou X., Wang C. (2014) CCNB1 is a prognostic biomarker for ER+ breast cancer. Med. Hypotheses. 83(3), 359–364. https://doi.org/10.1016/j.mehy.2014.06.013
  46. Yan M., Wang C., He B., Yang M., Tong M., Long Z., Liu B., Peng F., Xu L., Zhang Y., Liang D., Lei H., Subrata S., Kelley K.W., Lam E.W., Jin B., Liu Q. (2016) Aurora-A kinase: a potent oncogene and target for cancer therapy. Med. Res. Rev. 36(6), 1036–1079. https://doi.org/10.1002/med.21399
  47. Zhang W., Xu J. (2017) DNA methyltransferases and their roles in tumorigenesis. Biomark. Res. 5, 1. https://doi.org/10.1186/s40364-017-0081-z
  48. Leclerc, D, Pham D.N., Lévesque N., Truongcao M., Foulkes W.D., Sapienza C., Rozen R. (2017) Oncogenic role of PDK4 in human colon cancer cells. Br. J. Cancer. 116(7), 930–936. https://doi.org/10.1038/bjc.2017.38
  49. Mrschtik M., Ryan K.M. (2016) Another DRAM involved in autophagy and cell death. Autophagy. 12(3), 603–605. https://doi.org/10.1080/15548627.2015.1137412
  50. Mullan P.B., Quinn J.E., Harkin D.P. (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene. 25(43), 5854–5863. https://doi.org/10.1038/sj.onc.1209872
  51. Fang Y., Yu H., Liang X., Xu J., Cai X. (2014) Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer. Cancer Biol. Ther. 15(9), 1268–1279. https://doi.org/10.4161/cbt.29691
  52. Zhang B., Wang J., Liu W., Yin Y., Qian D., Zhang H., Shi B., Li C., Zhu J., Zhang L., Gao L., Wang C. (2016) Cytokeratin 18 knockdown decreases cell migration and increases chemosensitivity in non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 142(12), 2479–2487. https://doi.org/10.1007/s00432-016-2253-x
  53. Hu Y., Sun Z., Deng J., Hu B., Yan W., Wei H., Jiang J. (2017) Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway. Tumour Biol. 39(3), 1010428317694318. https://doi.org/10.1177/1010428317694318
  54. Golomb L., Bublik D.R., Wilder S., Nevo R., Kiss V., Grabusic K., Volarevic S., Oren M. (2012) Importin 7 and exportin 1 link c-Myc and p53 to regulation of ribosomal biogenesis. Mol. Cell. 45(2), 222–232. https://doi.org/10.1016/j.molcel.2011.11.022
  55. Gabai V.L., Meng L., Kim G., Mills T.A., Benjamin I.J., Sherman M.Y. (2012) Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein Hu R. Mol. Cell. Biol. 32(5), 929–940. https://doi.org/10.1128/MCB.05921-11
  56. Bangert A., Cristofanon S., Eckhardt I., Abhari B.A., Kolodziej S., Häcker S., Vellanki S.H., Lausen J., Debatin K M., Fulda S. (2012) Histone deacetylase inhibitors sensitize glioblastoma cells to TRAIL-induced apoptosis by c-myc-mediated downregulation of cFLIP. Oncogene. 31(44), 4677–4688. https://doi.org/10.1038/onc.2011.614
  57. Lasham A., Print C.G., Woolley A.G., Dunn S.E., Braithwaite A.W. (2013) YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem. J. 449(1), 11–23. https://doi.org/10.1042/BJ20121323
  58. Fukusumi T., Guo T.W., Sakai A., Ando M., Ren S., Haft S., Liu C., Amornphimoltham P., Gutkind J.S., Califano J.A. (2018) The NOTCH4-HEY1 pathway induces epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Clin. Cancer Res. 24(3), 619–633. https://doi.org/10.1158/1078-0432.CCR-17-1366
  59. Gong Y., Zhang L., Zhang A., Chen X., Gao P., Zeng Q. (2018) GATA4 inhibits cell differentiation and proliferation in pancreatic cancer. PloS One. 13(8), e0202449. https://doi.org/10.1371/journal.pone.0202449
  60. Soroceanu L., Murase R., Limbad C., Singer E., Allison J., Adrados I., Kawamura R., Pakdel A., Fukuyo Y., Nguyen D., Khan S., Arauz R., Yount G.L., Moore D.H., Desprez P.Y., McAllister S.D. (2013) Id-1 is a key transcriptional regulator of glioblastoma aggressiveness and a novel therapeutic target. Cancer Res. 73(5), 1559–1569. https://doi.org/10.1158/0008-5472.CAN-12-1943
  61. Zwart W., Theodorou V., Kok M., Canisius S., Linn S., Carroll J.S. (2011) Oestrogen receptor-co-factor-chromatin specificity in the transcriptional regulation of breast cancer. EMBO J. 30(23), 4764–4776. https://doi.org/10.1038/emboj.2011.368

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».