Changes in the Expression of Genes, Associated with Calcium Processes, in the Hippocampus of Mice under the Influence of Chronic Social Defeat Stress

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Using data from a complete transcriptome analysis, changes in the expression of genes encoding proteins involved in calcium regulation processes in the hippocampus of male mice with symptoms of depression caused by chronic social defeat stress were investigated. The expression of Cacna1g, Cacnb3, Camk1g, Camk2d, Camk2n2, Caly, Caln1, S100a16, Slc24a4 genes in the hippocampus of depressed mice was increased in relation to control, while the Cacna2d1, Cacng5, Grin2a, Calm2 gene expression was reduced. The greatest number of significant correlations between the expression of the gene Calm2, which has the highest transcriptional activity, and other differentially expressed genes was revealed. It is assumed that calcium signaling in the hippocampus of mice is disrupted under the influence of chronic social defeat stress. The involvement of the Calm2 gene and the Сamk1g, Camk2d and Camk2n2 genes in this process is discussed.

Авторлар туралы

M. Pavlova

Pavlov Institute of Physiology

Хат алмасуға жауапты Автор.
Email: pavlova@infran.ru
Russia, 199034, St. Petersburg

D. Smagin

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: dyuzhikova@infran.ru
Russia, 630090, Novosibirsk

N. Kudryavtseva

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: dyuzhikova@infran.ru
Russia, 630090, Novosibirsk

N. Dyuzhikova

Pavlov Institute of Physiology

Хат алмасуға жауапты Автор.
Email: dyuzhikova@infran.ru
Russia, 199034, St. Petersburg

Әдебиет тізімі

  1. Li Z., Ruan M., Chen J., Fang Y. (2021) Major depressive disorder: advances in neuroscience research and translational applications. Neurosci. Bull. 37, 863–880.
  2. Lohoff F.W. (2010) Overview of the genetics of major depressive disorder. Curr. Psychiatry Rep. 12, 539–546.
  3. Sall S.S., Thompson W., Santos A., Dwyer D.S. (2021) Analysis of major depression risk genes reveals evolutionary conservation, shared phenotypes, and extensive genetic interactions. Front. Psychiatry. 12, 698029.
  4. Mariani N., Cattane N., Pariante C., Cattaneo A. (2021) Gene expression studies in depression development and treatment: an overview of the underlying molecular mechanisms and biological processes to identify biomarkers. Translat. Psychiatry. 11, 354.
  5. Stacey D., Cohen-Woods S., Toben C., Arolt V., Dannlowski U., Baune B.T. (2013) Evidence of increased risk for major depressive disorder in individuals homozygous for the high-expressing 5-HTTLPR/rs25531 (LA) allele of the serotonin transporter promoter. Psychiatr. Genet. 23, 222–223.
  6. Fan T., Hu Y., Xin J., Zhao M., Wang J. (2020) Analyzing the genes and pathways related to major depressive disorder via a systems biology approach. Brain Behav. 10, e01502.
  7. Nobis A., Zalewski D., Waszkiewicz N. (2020) Peripheral markers of depression. J. Clin. Med. 9, 3793.
  8. Duman R.S., Voleti B. (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci. 35, 47–56.
  9. Donev R., Alawam K. (2015) Alterations in gene expression in depression: prospects for personalize patient treatment. Adv. Protein Chem. Struct. Biol. 101, 97–124.
  10. Norkeviciene A., Gocentiene R., Sestokaite A., Sabaliauskaite R., Dabkeviciene D., Jarmalaite S., Bulotiene G.A. (2022) Systematic review of candidate genes for major depression. Medicina (Kaunas). 58, 285.
  11. Berridge M.J. (2014) Calcium signaling and psychiatric disease: bipolar disorder and schizophrenia. Cell Tissue Res. 357, 477–492.
  12. Fairless R., Williams S.K., Diem R. (2014) Dysfunction of neuronal calcium signaling in neuroinflammation and neurodegeneration. Cell Tissue Res. 357, 455–462.
  13. Czeredys M. (2020) Dysregulation of neuronal calcium signaling via store-operated channels in Huntington’s disease. Front. Cell Dev. Biol. 8, 611735.
  14. Da Silva P.R., Gonzaga do N.T.K.S, Maia R.E., da Silva B.A. (2022) Ionic channels as potential targets for the treatment of autism spectrum disorder: a review. Curr. Neuropharmacol. 20, 1834–1849.
  15. Xu J., Minobe E., Kameyama M. (2022) Ca2+ dyshomeostasis links risk factors to neurodegeneration in Parkinson′s disease. Front. Cell. Neurosci. 16, 867385.
  16. Schmunk G., Gargus J.J. (2013) Channelopathy pathogenesis in autism spectrum disorders. Front. Genet. 4, 222.
  17. Cortés-Mendoza J., de León-Guerrero S.D., Pedraza-Alva G., Pérez-Martínez L. (2013) Shaping synaptic plasticity: the role of activity mediated epigenetic regulation on gene transcription. Int. J. Dev. Neurosci. 6, 359–369.
  18. Berridge M.J., Lipp P., M.D., Bootman M.D. (2000) The versatility and universality of calcium signaling. Nat. Rev. Mol. Cell Biol. 1, 11–21.
  19. Van Eldik L.J., Watterson D.M. (1998) Calmodulin and calcium signal transduction: an introduction. In: Calmodulin and Signal Transduction. Eds Van Eldik L.J., Watterson D.M. Elsevier: Academic Press, 1–15.
  20. Brandt P.C., Vanaman T.C. (1998) Calmodulin and ion flux regulation. In: Calmodulin and Signal Transduction. Eds Van Eldik L.J., Watterson D.M. Elsevier: Academic Press, 397–471.
  21. Zhang M., Abrams C., Wang L., Gizzi A., He L., Lin R., Chen Y., Loll P.J., Pascal J.M., Zhang J.-F. (2012) Structural basis for calmodulin as a dynamic calcium sensor. Structure. 20, 911–923.
  22. Salińska E., Łazarewicz J.W. (2012) Role of calcium in physiology and pathology of neurons. Postepy Biochem. 58, 403–417.
  23. Brini M., Calì T., Ottolini D., Carafoli E. (2014) Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 71, 2787–2814.
  24. Napolioni V., Persico A.M., Porcelli V., Palmieri L. (2011) The mitochondrial aspartate/glutamate carrier AGC1 and calcium homeostasis: physiological links and abnormalities in autism. Mol. Neurobiol. 44, 83–92.
  25. Schmunk G., Gargus J.J. (2013). Channelopathy pathogenesis in autism spectrum disorders. Front. Genet. 4, 222.
  26. Savitz J.B., Drevets W.C. (2009) Imaging phenotypes of major depressive disorder: genetic correlates. Neuroscience. 164, 300–330.
  27. Grace A.A. (2016). Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat. Rev. Neurosci. 17, 524–532.
  28. Krugers H.J., Lucassen P.J., Karst H., Joëls M. (2010) Chronic stress effects on hippocampal structure and synaptic function: relevance for depression and normalization by anti-glucocorticoid treatment. Front. Synaptic Neurosci. 2, 24.
  29. Lagace D.C., Donovan M.H., DeCarolis N.A., Farnbauch L.A., Malhotra S., Berton O., Nestler E.J., Krishnan V., Eisch A.J. (2010) Adult hippocampal neurogenesis is functionally important for stress-induced social avoidance. Proc. Natl. Acad. Sci. USA. 107, 4436–4441.
  30. Golden S.A., Covington H.E., Berton O., Russo S.J. (2011) A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183–1191.
  31. Kudryavtseva N.N. (2021) Development of mixed anxiety/depression-like state as a consequences of chronic anxiety: review of experimental data. In: Curr. Topics Behav. Neurosci. Berlin, Heidelberg: Springer, 54, 125–152.
  32. Kudryavtseva N.N., Bakshtanovskaya I.V., Koryakina L.A. (1991) Social model of depression in mice of C57BL/6J strain. Pharmacol. Biochem. Behav. 38, 315–320.
  33. Karst H., Joëls M. (2007). Brief RU 38486 treatment normalizes the effects of chronic stress on calcium currents in rat hippocampal CA1 neurons. Neuropsychopharmacology. 32, 1830–1839.
  34. Smagin D.A., Bondar N.P., Kovalenko I.N., Kudryavtseva N.N., Michurina T.V., Enikolopov G., Park J.-H., Peunova N., Glass Z., Sayed K. (2015) Altered hippocampal neurogenesis and amygdalar neuronal activity in adult mice with repeated experience of aggression. Front. Neurosci. 9, 443.
  35. DeLong G.R. (1992) Autism, amnesia, hippocampus and learning. Neurosci. Biobehav. Rev. 16, 63–70.
  36. Irle E., Ruhleder M., Lange C., Seidler-Brandler U., Salzer S., Dechent P., Weniger G., Leibing E., Leichsenring F. (2010) Reduced amygdalar and hippocampal size in adults with generalized social phobia. J. Psychiatry Neurosci. 35, 126–131.
  37. Moon A.L., Haan N., Lawrence S. Wilkinson L.S., Thomas K.L., Hall J. (2018) CACNA1C: Association with psychiatric disorders, behavior and neurogenesis. Schizophrenia Bull. 44, 958–965.
  38. Xu W., Yao X., Zhao F., Zhao H., Cheng Z., Yang W., Cui R., Xu S., Li B. (2020) Changes in hippocampal plasticity in depression and therapeutic approaches influencing these changes. Neural Plasticity. Article ID 8861903. 16.
  39. Schwarz K., Moessnang C., Schweiger J.I., Harneit A., Schneider M., Chen J., Cao H., Schwarz E., Witt S.H., Rietschel M., Nöthen M., Degenhardt F., Wackerhagen C., Erk S., Romanczuk-Seiferth N., Walter H., Tost H., Meyer-Lindenberg A. (2022) Ventral striatal-hippocampus coupling during reward processing as a stratification biomarker for psychotic disorders. Biol. Psychiatry. 91, 216–225.
  40. Smagin D.A., Galyamina A.G., Kovalenko I.L., Babenko V.N., Kudryavtseva N.N. (2019) Aberrant expression of collagen gene family in the brain regions of male mice with behavioral psychopathologies induced by chronic agonistic interactions. BioMed. Res. Internat. 7276389.
  41. Коваленко И.Л., Галямина А.Г., Смагин Д.А., Кудрявцева Н.Н. (2020) Коэкспрессия глутаматергических генов и генов аутистического спектра в гиппокампе у самцов мышей с нарушением социального поведения. Вавиловский журн. генетики и селекции. 24, 191–199.
  42. Berridge M.J., Bootman M.D., Roderick H.L. (2003) Calcium: calcium signaling: dynamics, homeostasis and remodeling. Nat. Rev. Mol. Cell Biol. 4, 517–529.
  43. Clapham D.E. (2007) Calcium signaling. Cell. 131, 1047–1058.
  44. Николлс Дж.Г., Мартин А.Р., Валлас Б. Дж., Фукс П.А. (2003) От нейрона к мозгу а. — М.: Едиториал УРСС, 672 с.
  45. Долгачева Л.П., Тулеуханов С.Т., Зинченко В.П. (2020) Участие Са2+-проницаемых AMPA-рецепторов в синаптической пластичности. Биол. мембраны: Журн. мембранной и клеточной биологии. 37, 175–187.
  46. Мельников К.Н. (2006) Разнообразие и свойства кальциевых каналов возбудимых мембран. Психофармакология и биологическая наркология. 6, 1139–1155.
  47. Stratton M.M., Chao L.H., Schulman H., Kuriyan J. (2013) Structural studies on the regulation of Ca2+/calmodulin dependent protein kinase II. Curr. Opin. Struct. Biol. 23, 292–301.
  48. Sałaciak K., Koszałka A., Zmudzka E., Pytka K. (2021) The calcium/calmodulin-dependent kinases II and IV as therapeutic targets in neurodegenerative and neuropsychiatric disorders. Int. J. Mol. Sci. 22, 1–32.
  49. Ben-Johny M., Yue D.T. (2014) Calmodulin regulation (calmodulation) of voltage-gated calcium channels. J. Gen. Physiol. 143, 679–692.
  50. Lucia D., Burgess D., Cullen C.L., Dorey E.S., Rawashdeh O., Moritz K.M. (2019) Periconceptional maternal alcohol consumption leads to behavioural changes in adult and aged offspring and alters the expression of hippocampal genes associated with learning and memory and regulators of the epigenome. Behav. Brain Res. 362, 249–257.
  51. Dedic N., Pohlmann M.L., Richter J.S., Mehta D., Czamara D., Metzger M.W., Dine J., Bedenk B.T., Hartmann J., Wagner K.V., Jurik A., Almli L.M., Lori A., Moosmang S., Hofmann F., Wotjak C.T., Rammes G., Eder M., Chen A., Ressler K.J., Wurst W., Schmidt M.V., Binder E.B., Deussing J.M. (2018) Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol. Psychiatry. 23, 533–543.
  52. O′Roak B.J., Vives L., Girirajan S., Karakoc E., Krumm N., Coe B.P., Levy R., Ko A., Lee C., Smith J.D.,Turner E.H., Stanaway I.B., Vernot B., Malig M.,Baker C.,Reilly B., Akey J.M., Borenstein E., Rieder M.J., Nickerson D.A., Bernier R., Shendure J., Eichler E.E. (2012) Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 485, 246–250.
  53. Li B., Tadross M.R., Tsien R.W. (2016) Sequential ionic and conformational signaling by calcium channels drives neuronal gene expression. Science. 351, 863–867.
  54. Kessi M., Chen B., Peng J., Yan F., Yang L., Yin F. (2021) Calcium channelopathies and intellectual disability: a systematic review. Orphanet. J. Rare. Dis. 16, 219.
  55. Andrade A., Brennecke A., Mallat S., Brown J., Rivadeneira J., Czepiel N., Londrigan L. (2019) Genetic associations between voltage-gated calcium channels and psychiatric disorders. Int. J. Mol. Sci. 20, 3537.
  56. Kudryavtseva N.N., Kovalenko I.L., Smagin D.A., Galyamina A.G., Babenko V.N. (2017) Abnormality of social behavior and dysfunction of autism related gene expression developing under chronic social defeat stress in male mice. Eur. Neuropsychopharmacol. 27, S678.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (856KB)
3.

Жүктеу (568KB)

© М.Б. Павлова, Д.А. Смагин, Н.Н. Кудрявцева, Н.А. Дюжикова, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».