Транскриптомный профиль резистентной к трастузумабу линии клеток BT-474 рака молочной железы
- Авторы: Шифон С.А.1, Карпец И.О.1, Чеснокова А.С.1, Карицкая П.Е.1, Укладов Е.О.1, Евгенов И.В.1, Сидоров С.В.1,2, Гуляева Л.Ф.1,3
-
Учреждения:
- Новосибирский национальный исследовательский государственный университет
- Городская клиническая больница № 1
- Научно-исследовательский институт молекулярной биологии и биофизики
- Выпуск: Том 59, № 4 (2025)
- Страницы: 572-586
- Раздел: ГЕНОМИКА. ТРАНСКРИПТОМИКА
- URL: https://journals.rcsi.science/0026-8984/article/view/320595
- DOI: https://doi.org/10.31857/S0026898425040041
- ID: 320595
Цитировать
Аннотация
Ключевые слова
Об авторах
С. А. Шифон
Новосибирский национальный исследовательский государственный университет
Email: s.shsherbakova@g.nsu.ru
Новосибирск, 630090 Россия
И. О. Карпец
Новосибирский национальный исследовательский государственный университетНовосибирск, 630090 Россия
А. С. Чеснокова
Новосибирский национальный исследовательский государственный университетНовосибирск, 630090 Россия
П. Е. Карицкая
Новосибирский национальный исследовательский государственный университетНовосибирск, 630090 Россия
Е. О. Укладов
Новосибирский национальный исследовательский государственный университетНовосибирск, 630090 Россия
И. В. Евгенов
Новосибирский национальный исследовательский государственный университетНовосибирск, 630090 Россия
С. В. Сидоров
Новосибирский национальный исследовательский государственный университет; Городская клиническая больница № 1Новосибирск, 630090 Россия; Новосибирск, 630047 Россия
Л. Ф. Гуляева
Новосибирский национальный исследовательский государственный университет; Научно-исследовательский институт молекулярной биологии и биофизики
Email: lfgulyaeva@gmail.com
Новосибирск, 630090 Россия; Новосибирск, 630060 Россия
Список литературы
- Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71(3), 209–249. https://doi.org/10.3322/caac.21660
- Perou C.M., Sørlie T., Eisen M.B., van de Rijn M., Jeffrey S.S., Rees C.A., Pollack J R., Ross D.T., Johnsen H., Akslen L.A., Fluge O., Pergamenschikov A., Williams C., Zhu S.X., Lønning P.E., Børresen-Dale A.L., Brown P.O., Botstein D. (2000) Molecular portraits of human breast tumours. Nature. 406(6797), 747–752. https://doi.org/10.1038/35021093
- Loibl S., Gianni L. (2017) HER2-positive breast cancer. Lancet. 389(10087), 2415–2429. https://doi.org/10.1016/S0140-6736(16)32417-5
- Baselga J., Cortés J., Kim S.B., Im S.A., Hegg R., Im Y.H., Roman L., Pedrini J.L., Pienkowski T., Knott A., Clark E., Benyunes M.C., Ross G., Swain S.M., CLEOPATRA Study Group (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. New Engl. J. Med. 366(2), 109–119. https://doi.org/10.1056/NEJMoa1113216
- Nahta R., Yu D., Hung M.C., Hortobagyi G.N., Esteva F.J. (2006) Mechanisms of disease: understanding resistance to HER2-targeted therapy in human breast cancer. Nat. Clin. Practice. Oncol. 3(5), 269–280. https://doi.org/10.1038/ncponc0509
- Nagata Y., Lan K.H., Zhou X., Tan M., Esteva F.J., Sahin A.A., Klos K.S., Li P., Monia B.P., Nguyen N.T., Hortobagyi G.N., Hung M.C., Yu D. (2004) PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 6(2), 117–127. https://doi.org/10.1016/j.ccr.2004.06.022
- Korkaya H., Wicha M.S. (2013) HER2 and breast cancer stem cells: more than meets the eye. Cancer Res. 73(12), 3489–3493. https://doi.org/10.1158/0008-5472.CAN-13-0260
- Vasan N., Baselga J., Hyman D.M. (2019) A view on drug resistance in cancer. Nature. 575(7782), 299–309. https://doi.org/10.1038/s41586-019-1730-1
- Salgia R., Kulkarni P. (2018) The Genetic/Non-genetic Duality of Drug ‘Resistance’ in Cancer. Trends Cancer. 4(2), 110–118. https://doi.org/10.1016/j.trecan.2018.01.001
- Lasfargues E.Y., Coutinho W.G., Redfield E.S. (1978) Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J. Natl. Cancer Institute. 61(4), 967–978. https://doi.org/10.1093/jnci/61.4.967
- Gale M., Li Y., Cao J., Liu Z.Z., Holmbeck M.A., Zhang M., Lang S.M., Wu L., Do Carmo M., Gupta S., Aoshima K., DiGiovanna M.P., Stern D.F., Rimm D.L., Shadel G.S., Chen X., Yan Q. (2020) Acquired resistance to HER2-targeted therapies creates vulnerability to ATP synthase inhibition. Cancer Res. 80(3), 524–535. https://doi.org/10.1158/0008-5472.CAN-18-3985
- von der Heyde S., Wagner S., Czerny A., Nietert M., Ludewig F., Salinas-Riester G., Arlt D., Beißbarth T. (2015) mRNA profiling reveals determinants of trastuzumab efficiency in HER2-positive breast cancer, PloS One. 10(2), e0117818. https://doi.org/10.1371/journal.pone.0117818
- van Slooten H.J., Bonsing B.A., Hiller A.J., Colbern G.T., van Dierendonck J.H., Cornelisse C.J., Smith H.S. (1995) Outgrowth of BT-474 human breast cancer cells in immune-deficient mice: a new in vivo model for hormone-dependent breast cancer. Br. J. Cancer. 72(1), 22–30. https://doi.org/10.1038/bjc.1995.271
- Andrews S. (2010) FastQC: a quality control tool for high throughput sequence data, available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on [2024])
- Bray N.L., Pimentel H., Melsted P., Pachter L. (2016) Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34(5), 525–527. https://doi.org/10.1038/nbt.3519
- Evangelista J.E., Xie Z., Marino G.B., Nguyen N., Clarke D.J.B., Ma’ayan A. (2023) Enrichr-KG: bridging enrichment analysis across multiple libraries, Nucleic Acids Res. 51(W1), W168–W179. https://doi.org/10.1093/nar/gkad393
- De Siervi A., De Luca P., Byun J.S., Di L.J., Fufa T., Haggerty C.M., Vazquez E., Moiola C., Longo D.L., Gardner K. (2010) Transcriptional autoregulation by BRCA1. Cancer Res. 70(2), 532–542. https://doi.org/10.1158/0008-5472.CAN-09-1477
- Pashaei E., Guzel E., Ozgurses M.E., Demirel G., Aydin N., Ozen M. (2016) A meta-analysis: identification of common Mir-145 target genes that have similar behavior in different GEO datasets. PloS One. 11(9), e0161491. https://doi.org/10.1371/journal.pone.0161491
- Liu Q., Dong H.T., Zhao T., Yao F., Xu Y., Chen B., Wu Y., Jin F., Xing P. (2022) Cancer-associated adipocytes release FUCA2 to promote aggressiveness in TNBC. Endocr. Relat. Cancer. 29(3), 139–149. https://doi.org/10.1530/ERC-21-0243
- Chu S., Wen Q., Qing Z., Luo J., Wang W., Chen L., Feng J., Xu L., Zang H., Fan S. (2017) High expression of heat shock protein 10 correlates negatively with estrogen/progesterone receptor status and predicts poor prognosis in invasive ductal breast carcinoma, Human Pathol. 61, 173–180. https://doi.org/10.1016/j.humpath.2016.09.039
- Zoppino F.C.M., Guerrero-Gimenez M.E., Castro G.N., Ciocca D.R. (2018) Comprehensive transcriptomic analysis of heat shock proteins in the molecular subtypes of human breast cancer. BMC Cancer. 18 (1), 700. https://doi.org/10.1186/s12885-018-4621-1
- Dev H., Chiang T.W., Lescale C., de Krijger I., Martin A.G., Pilger D., Coates J., Sczaniecka-Clift M., Wei W., Ostermaier M., Herzog M., Lam J., Shea A., Demir M., Wu Q., Yang F., Fu B., Lai Z., Balmus G., Belotserkovskaya R., Serra V., O’Connor M.J., Bruna A., Beli P., Pellegrini L., Caldas C., Deriano L., Jacobs J.J.L., Galanty Y., Jackson S.P. (2018) Shieldin complex promotes DNA end-joining and counters homologous recombination in BRCA1-null cells. Nat. Cell Biol. 20(8), 954–965. https://doi.org/10.1038/s41556-018-0140-1
- Mirman Z., Sasi N.K., King A., Chapman J.R., de Lange Т. (2022) 53BP1–shieldin-dependent DSB processing in BRCA1-deficient cells requires CST–Polα–primase fill-in synthesis. Nat. Cell Biol. 24, 51–61. https://doi.org/10.1038/s41556-021-00812-9
- Sommer A.K., Hermawan A., Ljepoja B., Fröhlich T., Arnold G.J., Wagner E., Roidl A. (2018) A proteomic analysis of chemoresistance development via sequential treatment with doxorubicin reveals novel players in MCF-7 breast cancer cells. Int. J. Mol. Med.42 (4), 1987–1997. https://doi.org/10.3892/ijmm.2018.3781.
- Sommer A.-K. (2021) Development of chemoresistance and formation of metastases: New aspects of two major obstacles in breast cancer treatment (2021). Doctoral dissertation. LMU München: Faculty of Chemistry and Pharmacy. https://doi.org/10.5282/edoc.28067
- Grillo P.K., Győrffy B., Götte M. (2021) Prognostic impact of the glypican family of heparan sulfate proteoglycans on the survival of breast cancer patients. J. Cancer Res. Clin. Oncol. 147(7), 1937–1955. https://doi.org/10.1007/s00432-021-03597-4
- Li Y., Yang P. (2011) GPC5 gene and its related pathways in lung cancer. J. Thorac. Oncol. 6(1), 2–5. https://doi.org/10.1097/JTO.0b013e3181fd6b04
- Matsuda K., Maruyama H., Guo F., Kleeff J., Itakura J., Matsumoto Y., Lander A.D., Korc M. (2001) Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res. 61(14), 5562–5569.
- Yuan S., Yu Z., Liu Q., Zhang M., Xiang Y., Wu N., Wu L., Hu Z., Xu B., Cai T., Ma X., Zhang Y., Liao C., Wang L., Yang P., Bai L., Li Y. (2016) GPC5, a novel epigenetically silenced tumor suppressor, inhibits tumor growth by suppressing Wnt/β-catenin signaling in lung adenocarcinoma. Oncogene. 35(47), 6120–6131. https://doi.org/10.1038/onc.2016.149
- Sun Y., Xu K., He M., Fan G., Lu H. (2018) Overexpression of glypican 5 (GPC5) inhibits prostate cancer cell proliferation and invasion via suppressing Sp1-mediated EMT and activation of Wnt/β-catenin signaling. Oncol. Res. 26(4), 565–572. https://doi.org/10.3727/096504017X15044461944385
- Zheng X., Qi C., Zhang S., Fang Y., Ning W. (2017) TGF-β1 induces Fstl1 via the Smad3-c-Jun pathway in lung fibroblasts. Am. J. Physiol. Lung Cell. Mol. Physiol. 313(2), L240–L251. https://doi.org/10.1152/ajplung.00523.2016
- Liu Y.-K., Jia Y.-J., Liu S.-H., Ma J. (2021) FSTL1 increases cisplatin sensitivity in epithelial ovarian cancer cells by inhibition of NF-κB pathway. Cancer Chemother. Pharmacol. 87(3), 405–414. https://doi.org/10.1007/s00280-020-04215-9
- Cheng S., Huang Y., Lou C., He Y., Zhang Y., Zhang Q. (2019) FSTL1 enhances chemoresistance and maintains stemness in breast cancer cells via integrin β3/Wnt signaling under miR-137 regulation. Cancer Biol. Ther. 20(3), 328–337. https://doi.org/10.1080/15384047.2018.1529101
- Yang Y., Lu T., Ji, X., Gao Y. (2023) FSTL1 suppresses triple-negative breast cancer lung metastasis by inhibiting M2-like tumor-associated macrophage recruitment toward the lungs. Diagnostics (Basel). 13(10), 1724. https://doi.org/10.3390/diagnostics13101724
- Ma J., Yang Y., Wang L., Jia X., Lu T., Zeng Y., Liu L., Gao Y. (2021) Follistatin-like 1 deficiency impairs T cell development to promote lung metastasis of triple negative breast cancer. Aging. 13(5), 7211–7227. https://doi.org/10.18632/aging.202579
- An J., Wang L., Zhao Y., Hao Q., Zhang Y., Zhang J., Yang C., Liu L., Wang W., Fang D., Lu T., Gao Y. (2017) Effects of FSTL1 on cell proliferation in breast cancer cell line MDA-MB-231 and its brain metastatic variant MDA-MB-231-BR. Oncol. Rep. 38(5), 3001–3010. https://doi.org/10.3892/or.2017.6004
- Jin T., Zhang Y., Zhang T. (2020) MiR-524–5p suppresses migration, invasion, and EMT progression in breast cancer cells through targeting FSTL1. Cancer Biother. Radiopharm. 35(10), 789–801. https://doi.org/10.1089/cbr.2019.3046
- Luu L.D.W., Kaakoush N.O., Castaño-Rodríguez N. (2022) The role of ATG16L2 in autophagy and disease. Autophagy. 18(11), 2537‒2546. https://doi.org/10.1080/15548627.2022.2042783
- Shen M., Duan W.-M., Wu M.-Y., Wang W.-J., Liu L., Xu M.-D., Zhu J., Li D.-M., Gui Q., Lian L., Gong F.-R., Chen K., Li W., Tao M. (2015) Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol. Rep. 34(1), 359‒367. https://doi.org/10.3892/or.2015.4005
- Zhang Z. (2022) POLD2 is activated by E2F1 to promote triple-negative breast cancer proliferation. Front. Oncol. 12, 981329. https://doi.org/10.3389/fonc.2022.981329
- Katsuta E., Opyrchal M. (2023) Editorial: Novel signaling pathways and therapy in breast cancer. Front. Oncol. 13, 1215023. https://doi.org/10.3389/fonc.2023.1215023
- Chen F., Wang Q., Yu X., Yang N., Wang Y., Zeng Y., Zheng Z., Zhou F., Zhou Y. (2021) MCPIP1-mediated NFIC alternative splicing inhibits proliferation of triple-negative breast cancer via cyclin D1-Rb-E2F1 axis. Cell Death Dis. 12(4), 370. https://doi.org/10.1038/s41419-021-03661-4
- Fang Y., Wang Y., Ma H., Guo Y., Xu R., Chen X., Chen X., Lv Y., Li P., Gao Y. (2024) TFAP2A downregulation mediates tumor-suppressive effect of miR-8072 in triple-negative breast cancer via inhibiting SNAI1 transcription. Br. Cancer Res. 26, 103. https://doi.org/10.1186/s13058-024-01858-x
- Altundag K., Altundag O., Gunduz M., Arun B. (2004) Possible interaction between activator protein-1 and proto-oncogene B-cell lymphoma gene 6 in breast cancer patients resistant to tamoxifen. Med. Hypotheses. 63(5), 823‒826. https://doi.org/10.1016/j.mehy.2004.03.026
- Ding K., Li W., Zou Z., Zou X., Wang C. (2014) CCNB1 is a prognostic biomarker for ER+ breast cancer. Med. Hypotheses. 83(3), 359–364. https://doi.org/10.1016/j.mehy.2014.06.013
- Yan M., Wang C., He B., Yang M., Tong M., Long Z., Liu B., Peng F., Xu L., Zhang Y., Liang D., Lei H., Subrata S., Kelley K.W., Lam E.W., Jin B., Liu Q. (2016) Aurora-A kinase: a potent oncogene and target for cancer therapy. Med. Res. Rev. 36(6), 1036–1079. https://doi.org/10.1002/med.21399
- Zhang W., Xu J. (2017) DNA methyltransferases and their roles in tumorigenesis. Biomark. Res. 5, 1. https://doi.org/10.1186/s40364-017-0081-z
- Leclerc, D, Pham D.N., Lévesque N., Truongcao M., Foulkes W.D., Sapienza C., Rozen R. (2017) Oncogenic role of PDK4 in human colon cancer cells. Br. J. Cancer. 116(7), 930–936. https://doi.org/10.1038/bjc.2017.38
- Mrschtik M., Ryan K.M. (2016) Another DRAM involved in autophagy and cell death. Autophagy. 12(3), 603–605. https://doi.org/10.1080/15548627.2015.1137412
- Mullan P.B., Quinn J.E., Harkin D.P. (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene. 25(43), 5854–5863. https://doi.org/10.1038/sj.onc.1209872
- Fang Y., Yu H., Liang X., Xu J., Cai X. (2014) Chk1-induced CCNB1 overexpression promotes cell proliferation and tumor growth in human colorectal cancer. Cancer Biol. Ther. 15(9), 1268–1279. https://doi.org/10.4161/cbt.29691
- Zhang B., Wang J., Liu W., Yin Y., Qian D., Zhang H., Shi B., Li C., Zhu J., Zhang L., Gao L., Wang C. (2016) Cytokeratin 18 knockdown decreases cell migration and increases chemosensitivity in non-small cell lung cancer. J. Cancer Res. Clin. Oncol. 142(12), 2479–2487. https://doi.org/10.1007/s00432-016-2253-x
- Hu Y., Sun Z., Deng J., Hu B., Yan W., Wei H., Jiang J. (2017) Splicing factor hnRNPA2B1 contributes to tumorigenic potential of breast cancer cells through STAT3 and ERK1/2 signaling pathway. Tumour Biol. 39(3), 1010428317694318. https://doi.org/10.1177/1010428317694318
- Golomb L., Bublik D.R., Wilder S., Nevo R., Kiss V., Grabusic K., Volarevic S., Oren M. (2012) Importin 7 and exportin 1 link c-Myc and p53 to regulation of ribosomal biogenesis. Mol. Cell. 45(2), 222–232. https://doi.org/10.1016/j.molcel.2011.11.022
- Gabai V.L., Meng L., Kim G., Mills T.A., Benjamin I.J., Sherman M.Y. (2012) Heat shock transcription factor Hsf1 is involved in tumor progression via regulation of hypoxia-inducible factor 1 and RNA-binding protein Hu R. Mol. Cell. Biol. 32(5), 929–940. https://doi.org/10.1128/MCB.05921-11
- Bangert A., Cristofanon S., Eckhardt I., Abhari B.A., Kolodziej S., Häcker S., Vellanki S.H., Lausen J., Debatin K M., Fulda S. (2012) Histone deacetylase inhibitors sensitize glioblastoma cells to TRAIL-induced apoptosis by c-myc-mediated downregulation of cFLIP. Oncogene. 31(44), 4677–4688. https://doi.org/10.1038/onc.2011.614
- Lasham A., Print C.G., Woolley A.G., Dunn S.E., Braithwaite A.W. (2013) YB-1: oncoprotein, prognostic marker and therapeutic target? Biochem. J. 449(1), 11–23. https://doi.org/10.1042/BJ20121323
- Fukusumi T., Guo T.W., Sakai A., Ando M., Ren S., Haft S., Liu C., Amornphimoltham P., Gutkind J.S., Califano J.A. (2018) The NOTCH4-HEY1 pathway induces epithelial-mesenchymal transition in head and neck squamous cell carcinoma. Clin. Cancer Res. 24(3), 619–633. https://doi.org/10.1158/1078-0432.CCR-17-1366
- Gong Y., Zhang L., Zhang A., Chen X., Gao P., Zeng Q. (2018) GATA4 inhibits cell differentiation and proliferation in pancreatic cancer. PloS One. 13(8), e0202449. https://doi.org/10.1371/journal.pone.0202449
- Soroceanu L., Murase R., Limbad C., Singer E., Allison J., Adrados I., Kawamura R., Pakdel A., Fukuyo Y., Nguyen D., Khan S., Arauz R., Yount G.L., Moore D.H., Desprez P.Y., McAllister S.D. (2013) Id-1 is a key transcriptional regulator of glioblastoma aggressiveness and a novel therapeutic target. Cancer Res. 73(5), 1559–1569. https://doi.org/10.1158/0008-5472.CAN-12-1943
- Zwart W., Theodorou V., Kok M., Canisius S., Linn S., Carroll J.S. (2011) Oestrogen receptor-co-factor-chromatin specificity in the transcriptional regulation of breast cancer. EMBO J. 30(23), 4764–4776. https://doi.org/10.1038/emboj.2011.368
Дополнительные файлы
