Recombinase-Based Engineering of Plant Genomes in the Era of Genome Editing

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The rapidly evolving CRISPR/Cas-based genome editing technologies, which have dominated nearly all areas of molecular biology over the past decade, still face several unresolved challenges. One of the major limitations of current genome editing tools is the low efficiency of targeted long-sequence insertions. This issue is particularly critical in plant systems, where genome editing efficiency is hindered by specific cellular characteristics. Site-specific recombinases (SSRs), which have long been employed in genetic engineering to mediate various genomic rearrangements – including deletions, duplications, insertions, and inversions – are limited in their application by the requirement for preexisting recombination recognition sites in the genome. However, CRISPR/Cas and recombinase tools complement each other, and their combined use offers a powerful strategy to overcome key limitations of genome editing. The discovery of CRISPR-associated transposons such as CAST and OMEGA, which naturally utilize their own recombinases, marks a significant advance in genome engineering, providing an elegant example of the natural convergence between CRISPR and recombinase technologies.

作者简介

S. Rozov

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: rozov@bionet.nsc.ru
Novosibirsk, Russia

E. Deineko

Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences

Email: deineko@bionet.nsc.ru
Novosibirsk, Russia

参考

  1. Ishino Y., Krupovic M., Forterre P. (2018) History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J. bacteriol. 200, 1110–1128.
  2. Sadowski P. (1986) Site-specific recombinases: changing partners and doing the twist. J. Bacteriol. 165, 341–347.
  3. Turan S., Bode J. (2011) Site-specific recombinases: from tag-and-target-to tag-and-exchange-based genomic modifications. FASEB J. 25, 4088–4107.
  4. Hwang J., Ye D.Y., Jung G.Y., Jang S. (2024) Mobile genetic element-based gene editing and genome engineering: recent advances and applications. Biotechnol. Adv. 72, 108343.
  5. Grindley N.D.F., Whiteson K.L., Rice P.A. (2006) Mechanisms of site-specific recombination. Annu. Rev. Biochem. 75, 567–605.
  6. Wang Y., Yau Y.Y., Perkins-Balding D., Thomson J.G. (2011) Recombinase technology: applications and possibilities. Plant Сell Rep. 30, 267–285.
  7. Liao H., Wu J., VanDusen N.J., Li Y., Zheng, Y. (2024) CRISPR-Cas9-mediated homology-directed repair for precise gene editing. Mol. Therapy Nucl. Acids. 35, 102344.
  8. Collonnier C., Guyon-Debast A., Maclot F., Mara K., Charlot F., Nogué F. (2017) Towards mastering CRISPR-induced gene knock-in in plants: survey of key features and focus on the model Physcomitrella patens. Methods. 121, 103–117.
  9. Rozov S.M., Permyakova N.V., Sidorchuk Y.V., Deineko E.V. (2022) Optimization of genome knockin method: Search for the most efficient genome regions for transgene expression in plants. Internat. J. Mol. Sci. 23, 4416.
  10. Pan Y., Zhao C., Fu W., Yang S., Lv S. (2024) Comparative analysis of structural dynamics and allosteric mechanisms of RecA/Rad51 family proteins: integrated atomistic MD simulation and network-based analysis. Internat. J. Biol. Macromol. 261, 129843.
  11. Wang Y., Yau Y.Y., Perkins-Balding D., Thomson J.G. (2011) Recombinase technology: applications and possibilities. Plant Cell Rep. 30, 267–285. https://doi.org/10.1007/s00299-010-0938-1
  12. Gaj T., Sirk S.J., Barbas C.F. (2014) Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol. Bioeng. 111, 1–15. https://doi.org/10.1002/bit.25096
  13. Fogg P.C., Colloms S., Rosser S., Stark M., Smith M.C. (2014) New applications for phage integrases. J. Mol. Boil. 426, 2703–2716.
  14. Auvray F., Coddeville M., Espagno G., Ritzenthaler P. (1999) Integrative recombination of Lactobacillus delbrueckii bacteriophage mv4: functional analysis of the reaction and structure of the attP site. Mol. Gen. Genet. MGG. 262, 355–366.
  15. Diaz V., Servert P., Prieto I., Gonzalez MA., Martinez A.C., Alonso J.C., Bernad A. (2001) New insights into host factor requirements for prokaryotic beta-recombinase-mediated reactions in mammalian cells. J. Biol. Chem. 276, 16257–16264.
  16. Schwikardi M., Droge P. (2000) Site-specific recombination in mammalian cells catalyzed by gammadelta resolvase mutants: implications for the topology of episomal DNA. FEBS Lett. 471, 147–150.
  17. Thomson J.G., Ow D.W. (2006) Site-specific recombination systems for the genetic manipulation of eukaryotic genomes. Genesis. 44, 465–476.
  18. Thomson J.G., Yau Y.Y., Blanvillain R., Chiniquy D., Thilmony R., Ow D.W. (2009) ParA resolvase catalyzes site-specific excision of DNA from the Arabidopsis genome. Transgenic Res. 18, 237–248.
  19. Mouw K.W., Rowland S.J., Gajjar M.M., Boocock M.R., Stark W.M., Rice P.A. (2008) Architecture of a serine recombinase–DNA regulatory complex. Mol. Cell. 30, 145–155.
  20. Rice P.A. (2015) Serine resolvases. In: Mobile DNA III (eds Chandler M., Gellert M., Lambowitz A.M., Rice P.A., Sandmeyer S.B.). Am. Soc. Microbiol. Press. 237–252.
  21. Ghosh P., Pannunzio N.R., Hatfull G.F. (2005) Synapsis in phage Bxb1 integration: selection mechanism for the correct pair of recombination sites. J. Mol. Biol. 349, 331–348.
  22. Smith M.C.A., Till R., Brady K., Soultanas P., Thorpe H., Smith M.C.M. (2004) Synapsis and DNA cleavage in phiC31 integrasemediated site-specific recombination. Nucl. Acids Res. 32, 2607–2617.
  23. Olorunniji F.J., Buck D.E., Colloms S.D., McEwan A.R., Smith M.C., Stark W.M., Rosser S.J. (2012) Gated rotation mechanism of site-specific recombination by ΦC31 integrase. Proc. Natl. Acad. Sci. USA. 109, 19661–19666.
  24. Zhang L., Ou X., Zhao G., Ding X. (2008) Highly efficient in vitro site-specific recombination system based on Streptomyces phage ΦBT1 integrase. J. Bacteriol. 190, 6392–6397.
  25. Gidoni D., Srivastava V., Carmi N. (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In vitro Cell. Dev. Biol.-Plant. 44, 457–467.
  26. Srivastava V., Gidoni D. (2010) Site-specific gene integration technologies for crop improvement. In vitro Cell. Dev. Biol.-Plant. 46, 219–232.
  27. Turan S., Zehe C., Kuehle J., Qiao J., Bode J. (2013) Recombinase-mediated cassette exchange (RMCE) – a rapidly-expanding toolbox for targeted genomic modifications. Gene. 515, 1–27.
  28. Thomson J.G., Blechl A. (2015) Recombinase technology for precise genome engineering. In: Advances in new technology for targeted modification of plant genomes. Eds F. Zhang, H. Puchta, J.G. Thomson. N. Y.: Springer, pp. 113–144.
  29. Qamar Z., Rizwan M., Rani R., Shahzad R., Jami S., Faheem M., Shimelis H. (2024) Trends towards the production of biologically safe marker-free transgenic plants. Appl. Ecol. Environ. Res. 22, 221–247.
  30. Nanto K., Ebinuma H. (2008) Marker-free site-specific integration plants. Transgenic Res. 17, 337–344.
  31. Louwerse J.D., van Lier M.C., van der Steen D.M., de Vlaam C.M., Hooykaas P.J., Vergunst A.C. (2007) Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. Plant Physiol. 145, 1282–1293.
  32. Baszczynski C.L., Gordon-Kamm W.J., Lyznik L.A., Peterson D.J., Zhao Z.Y. (2003) Site-specific recombinases and their uses for targeted gene manipulation in plant systems. In: Transgenic plants: current innovations and future trends. Ed Stewart Jr. C.N. Wymondham: Horizon, pp. 157–178.
  33. Li Z., Moon B.P., Xing A., Liu Z.B., McCardell R.P., Damude H.G., Falco S.C. (2010) Stacking multiple transgenes at a selected genomic site via repeated recombinase-mediated DNA cassette exchanges. Plant Physiol. 154, 622–631.
  34. Lauth M., Spreafico F., Dethleffsen K., Meyer M. (2002) Stable and efficient cassette exchange under non-selectable conditions by combined use of two site-specific recombinases. Nucl. Acids Res. 30, e115.
  35. De Paepe A., De Buck S., Nolf J., Van Lerberge E., Depicker A. (2013) Site-specific T–DNA integration in Arabidopsis thaliana mediated by the combined action of CRE recombinase and ϕC31 integrase. Plant J. 75, 172–184.
  36. Huang J., Zhou W., Dong W., Watson A.M., Hong Y. (2009) Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc. Natl. Acad. Sci. USA. 106, 8284–8289.
  37. Sadelain M., Papapetrou E.P., Bushman F.D. (2012) Safe harbours for the integration of new DNA in the human genome. Nat. Rev. Cancer. 12, 51–58.
  38. Dong O.X., Yu S., Jain R., Zhang N., Duong P.Q., Butler C., Li Y., Lipzen A., Martin J.A., Barry K.W., Schmutz J., Tian L., Ronald P.C. (2020) Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9. Nat. Commun. 11, 1178.
  39. Xu J., PerezSanchez P., Sadravi S. (2025) Unlocking the full potential of plant cell-based production for valuable proteins: challenges and innovative strategies. Biotechnol. Adv. 79, 108526.
  40. Kito M., Itami S., Fukano Y., Yamana K., Shibui T. (2002) Construction of engineered CHO strains for high-level production of recombinant proteins. Appl. Microbiol. Biotechnol. 60, 442–448.
  41. Baumann M., Gludovacz E., Sealover N., Bahr S., George H., Lin N., Kayser K., Borth N. (2017) Preselection of recombinant gene integration sites enabling high transcription rates in CHO cells using alternate start codons and recombinase mediated cassette exchange. Biotechnol. Bioengin. 114, 2616–2627.
  42. Srivastava V., Thomson J. (2016) Gene stacking by recombinases. Plant Biotechnol. J. 14, 471–482.
  43. Anzalone A.V., Randolph P.B., Davis J.R., Sousa A.A., Koblan L.W., Levy J.M., Chen P.J., Wilson C., Newby G.A., Raguram A., Liu D.R. (2019) Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 576, 149–157.
  44. Jiang Y.Y., Chai Y.P., Lu M.H., Han X.L., Lin Q., Zhang Y., Zhang Q., Zhou Y., Wang X.C., Gao C., Chen Q.J. (2020) Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol. 21, 1–10.
  45. Tingting L., Jinpeng Z., Xi Y., Kejian W., Yuchun R., Chun W. (2023) Development and application of prime editing in plants. Rice Sci. 30, 509–522.
  46. Sun C., Lei Y., Li B., Gao Q., Li Y., Cao W., Yang C., Li H., Wang Z., Li Y., Wang Y., Liu J., Zhau K.T., Gao C. (2023) Precise integration of large DNA sequences in plant genomes using PrimeRoot editors. Nat. Biotechnol. 42, 316–327.
  47. Anzalone A.V., Gao X.D., Podracky C.J., Nelson A.T., Koblan L.W., Raguram A., Levy J.M., Merser J.A.M., Liu D.R. (2022) Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740.
  48. Yarnall M.T., Ioannidi E.I., Schmitt-Ulms C., Krajeski R.N., Lim J., Villiger L., Gootenberg J.S. (2023) Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPRdirected integrases. Nat. Biotechnol. 41, 500–512.
  49. Peng T., Sun X., Mumm R.H. (2014) Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Mol. Breeding. 33, 89–104.
  50. Que Q., Chilton M.D.M., de Fontes C.M., He C., Nuccio M., Zhu T., Wu Y., Chen J.S., Shi, L. (2010) Trait stacking in transgenic crops: challenges and opportunities. GM crops. 1, 220–229.
  51. Li Y., Li R., Han Z., Wang H., Zhou S., Li Y., Wang Y., Ow D.W. (2022) Recombinase-mediated gene stacking in cotton. Plant Physiol. 188, 1852–1865.
  52. Gao H., Mutti J., Young J.K., Yang M., Schroder M., Lenderts B., Wang L., Peterson D., Clair G.S., Jones S., Chilcoat N.D. (2020) Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Front. Plant Sci. 11, 535.
  53. Li W. (2025) Chromosome engineering: technologies, applications, and challenges. Annu. Rev. Anim. Biosci. 13, 25–47.
  54. Liu Y., Liu Q., Yi C., Liu C., Shi Q., Wang M., Han F. (2025) Past innovations and future possibilities in plant chromosome engineering. Plant Biotechnol. J. 23, 695–708.
  55. Murata M. (2014) Minichromosomes and artificial chromosomes in Arabidopsis. Chromosom. Res. 22, 167–178.
  56. Zhou J., Liu Y., Guo X., Birchler J.A., Han F., Su H. (2022) Centromeres: from chromosome biology to biotechnology applications and synthetic genomes in plants. Plant Biotechnol. J. 20, 2051–2063.
  57. Dawe R.K., Gent J.I., Zeng Y., Zhang H., Fu F.F., Swentowsky K.W., Kim D.W., Wang N., Liu J., Piri R.D. (2023) Synthetic maize centromeres transmit chromosomes across generations. Nat. Plants. 9, 433–441.
  58. Kan M., Huang T. Zhao P. (2022) Artificial chromosome technology and its potential application in plants. Front. Plant Sci. 13, 970943.
  59. Peters J.E., Makarova K.S., Shmakov S., Koonin E.V. (2017) Recruitment of CRISPR-Cas systems by Tn7-like transposons. Proc. Natl. Acad. Sci. USA. 114, E7358–E7366.
  60. Strecker J., Ladha A., Gardner Z., Schmid-Burgk J.L., Makarova K.S., Koonin E.V., Zhang F. (2019) RNA-guided DNA insertion with CRISPR-associated transposases. Science. 365, 48–53.
  61. Karvelis T., Druteika G., Bigelyte G., Budre K., Zedaveinyte R., Silanskas A., Kazlauskas D., Venclovas C., Siksnys V. (2021) Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature. 599, 692–696.
  62. Saito M., Xu P., Faure G., Maguire S., Kannan S., Altae-Tran H., Vo S., Desimone A., Macrae R.K., Zhang F. (2023) Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature. 620, 660–668.
  63. Tossolini I., Mencia R., Arce A.L., Manavella P.A. (2025) The genome awakens: transposon-mediated gene regulation. Trends Plant Sci. TRPLSC 2791. https://doi.org/10.1016/j.tplants.2025.02.005
  64. Vo P.L.H., Ronda C., Klompe S.E., Chen E.E., Acree C., Wang H.H., Sternberg S.H. (2021) CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489.
  65. Chang C.W., Truong V.A., Pham N.N., Hu Y.C. (2024) RNA-guided genome engineering: paradigm shift towards transposons. Trends Biotechnol. 42, 970–985.
  66. Strecker J., Ladha A., Makarova K.S., Koonin E.V., Zhang F. (2020) Response to comment on "RNA-guided DNA insertion with CRISPR-associated transposases". Science. 368, eabb2920.
  67. Vo P.L.H., Acree C., Smith M.L., Sternberg S.H. (2021) Unbiased profiling of CRISPR RNA-guided transposition products by long-read sequencing. Mob. DNA. 12, 13.
  68. Tou C.J., Orr B., Kleinstiver B.P. (2023) Precise cut-and-paste DNA insertion using engineered type VK CRISPR-associated transposases. Nat. Biotechnol. 41, 968–979.
  69. Klompe S.E., Vo P.L., Halpin-Healy T.S., Sternberg S.H. (2019) Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature. 571, 219–225.
  70. Wimmer F., Mougiakos I., Englert F., Beisel C.L. (2022) Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. Mol. Cell. 82, 1210–1224.
  71. Saito M., Ladha A., Strecker J., Faure G., Neumann E., Altae-Tran H., Macrae R.K., Zhang F. (2021) Dual modes of CRISPR-associated transposon homing. Cell. 184, 2441–2453.
  72. Zhang Y., Sun X., Wang Q., Xu J., Dong F., Yang S., Yang J., Zhang Z., Qian Y., Chen J., Zhang J., Liu Y., Tao R., Jiang Y., Yang J., Yang S. (2020) Multicopy chromosomal integration using CRISPR-associated transposases. ACS Synth. Biol. 9, 1998–2008.
  73. Yang S., Zhang Y., Xu J., Zhang J., Zhang J., Yang J., Jiang Y., Yang S. (2021) Orthogonal CRISPR-associated transposases for parallel and multiplexed chromosomal integration. Nucl. Acids Res. 49, 10192–10202.
  74. Vo P.L.H., Ronda C., Klompe S.E., Chen E.E., Acree C., Wang H.H., Sternberg S.H. (2021) CRISPR RNA-guided integrases for high-efficiency, multiplexed bacterial genome engineering. Nat. Biotechnol. 39, 480–489.
  75. Peters J.E. (2019) Targeted transposition with Tn7 elements: safe sites, mobile plasmids, CRISPR/Cas and beyond. Mol. Microbiol. 112, 1635–1644.
  76. Altae-Tran H., Kannan S., Demircioglu F.E., Oshiro R., Nety S.P., McKay L.J., Dlakic M., Inskeep W.P., Makarova K.S., Zhang F. (2021) The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science. 374, 57–65.
  77. Karvelis T., Druteika G., Bigelyte G., Budre K., Zedaveinyte R., Silanskas A., Kazlauskas D., Venclovas C., Siksnys V. (2021) Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature. 599, 692–696.
  78. Xiang G., Li Y., Sun J., Huo Y., Cao S., Cao Y., Guo Y., Yang L., Cai Y., Zhang Y.E., Wang H. (2024) Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors. Nat. Biotechnol. 42, 745–757.
  79. Sasnauskas G., Tamulaitiene G., Druteika G., Carabias A., Silanskas A., Kazlauskas D., Venclovas C., Montoya G., Karvelis T., Siksnys V. (2023) TnpB structure reveals minimal functional core of Cas12 nuclease family. Nature. 616, 384–389.
  80. Bao W., Jurka J. (2013) Homologues of bacterial TnpB_IS605 are widespread in diverse eukaryotic transposable elements. Mobile DNA. 4, 12.
  81. Yoon P.H., Skopintsev P., Shi H., Chen L., Adler B.A., Al-Shimary M., Doudna J.A. (2023) Eukaryotic RNA-guided endonucleases evolved from a unique clade of bacterial enzymes. Nucl. Acids Res. 51, 12414–12427.
  82. Jiang K., Lim J., Sgrizzi S., Trinh M., Kayabolen A., Yutin N., Bao W., Kato K., Koonin E.V., Abudayyeh O.O. (2023) Programmable RNA-guided DNA endonucleases are widespread in eukaryotes and their viruses. Sci. Adv. 9, eadk0171.
  83. Tenjo-Castaño F., Montoya G., Carabias A. (2022) Transposons and CRISPR: rewiring gene editing. Biochemistry. 62, 3521–3532.
  84. Liu P., Panda K., Edwards S.A., Swanson R., Yi H., Pandesha P., Hung Y.-H., Klaas G., Ye H., Collins M.V., Slotkin R.K. (2024) Transposase-assisted target-site integration for efficient plant genome engineering. Nature. 631, 593–600.
  85. Iyer L.M., Koonin E.V., Aravind L. (2002) Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics. 3, 1–11.
  86. Court D.L., Sawitzke J.A., Tomason L.C. (2002) Genetic engineering using homologous recombination. Annu. Rev. Genet. V. 36, 361–388.
  87. Wang C., Cheng J.K., Zhang Q., Hughes N.W., Xia Q., Winslow M.M., Cong L. (2021) Microbial single-strand annealing proteins enable CRISPR gene-editing tools with improved knock-in efficiencies and reduced off-target effects. Nucl. Acids Res. 49, e36.
  88. Wang C., Qu Y., Cheng J.K., Hughes N.W., Zhang Q., Wang M., Cong L. (2022) dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nat. Cell Biol. 24, 268–278.
  89. Jones D., Unoson C., Leroy P., Curic V., Elf J. (2017) Kinetics of dCas9 target search in Escherichia coli. Biophys. J. 112, 314a.
  90. Tomason L.C., Costantino N., Court D.L. (2016) Examining a DNA replication requirement for bacteriophage λ Redand Rac prophage RecET-promoted recombination in Escherichia coli. mBio. 7, e01443–16.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».