Expression of long non-coding RNAs and protein-coding genes involved in cellular senescence in patients with chronic obstructive pulmonary disease
- 作者: Markelov V.A.1,2, Korytina G.F.1,2, Aznabaeva Y.G.2, Gibadullin I.A.2, Akhmadishina L.Z.1,3, Nasibullin T.R.1, Kochetova O.V.1, Avzaletdinov A.M.2, Zagidullin N.S.2
-
隶属关系:
- Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS)
- Bashkir State Medical University
- Ufa State Petroleum Technological University
- 期: 卷 58, 编号 5 (2024)
- 页面: 821-839
- 栏目: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://journals.rcsi.science/0026-8984/article/view/281591
- DOI: https://doi.org/10.31857/S0026898424050119
- EDN: https://elibrary.ru/HUEBQI
- ID: 281591
如何引用文章
详细
Chronic obstructive pulmonary disease (COPD) is a complex chronic heterogeneous respiratory inflammatory disease. The disease develops as a result of complex interaction of molecular genetic factors, a network of epigenetic regulators and environmental exposure. COPD pathogenesis may also involve dysregulation of stress responses preventing cellular senescence, encompassing a wide range of signaling pathways and their epigenetic regulators, including long noncoding RNAs (lncRNAs). In order to assess the contribution of genes involved in key signaling pathways related to cellular senescence to the molecular pathogenesis of COPD the expression profile of long non-coding RNA (TP53TG1, LINC00342, H19, MALAT1, DNM3OS, MEG3) and protein-coding genes (PTEN, TGFB2, FOXO3, KEAP1) in peripheral blood mononuclear cells of COPD patients (n = 92) and controls (n = 81) was evaluated. Significant downregulation of lncRNAs TP53TG1, DNM3OS and mRNA TGFB2 expression levels was found. The expression levels of ncRNAs MALAT1 and LINC00342 were upregulated in COPD patients. Based on the results of multiple regression and ROC-analysis, a highly informative prognostic model was determined, which included simultaneous expression level assessment of TP53TG1 and TGFB2 (AUC = 0.92). A positive correlation of MALAT1, DNM3OS, TGFB2, FOXO3 and KEAP1 expression levels with lung function parameters which reflect the disease progression was established. The differentially expressed lncRNAs (TP53TG1, LINC00342, DNM3OS, MALAT1) and protein-coding gene TGFB2 detected in the study functionally act as regulators of apoptosis, inflammation, fibrogenesis and epithelial-mesenchymal transition, indicating an active role of cellular senescence processes in the molecular pathogenesis of COPD.
全文:

作者简介
V. Markelov
Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS); Bashkir State Medical University
Email: guly_kory@mail.ru
Institute of Biochemistry and Genetics
俄罗斯联邦, Ufa, 450054; Ufa, 450008G. Korytina
Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS); Bashkir State Medical University
编辑信件的主要联系方式.
Email: guly_kory@mail.ru
Institute of Biochemistry and Genetics
俄罗斯联邦, Ufa, 450054; Ufa, 450008Y. Aznabaeva
Bashkir State Medical University
Email: guly_kory@mail.ru
俄罗斯联邦, Ufa, 450008
I. Gibadullin
Bashkir State Medical University
Email: guly_kory@mail.ru
俄罗斯联邦, Ufa, 450008
L. Akhmadishina
Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS); Ufa State Petroleum Technological University
Email: guly_kory@mail.ru
Institute of Biochemistry and Genetics
俄罗斯联邦, Ufa, 450054; Ufa, 450064T. Nasibullin
Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS)
Email: guly_kory@mail.ru
Institute of Biochemistry and Genetics
俄罗斯联邦, Ufa, 450054O. Kochetova
Ufa Federal Research Centre of the Russian Academy of Sciences (IBG UFRC RAS)
Email: guly_kory@mail.ru
Institute of Biochemistry and Genetics
俄罗斯联邦, Ufa, 450054A. Avzaletdinov
Bashkir State Medical University
Email: guly_kory@mail.ru
俄罗斯联邦, Ufa, 450008
N. Zagidullin
Bashkir State Medical University
Email: guly_kory@mail.ru
俄罗斯联邦, Ufa, 450008
参考
- Чучалин А.Г., Авдеев С.Н., Айсанов З.Р., Белевский А.С., Лещенко И.В., Овчаренко С.И., Шмелев Е.И. (2022) Хроническая обструктивная болезнь легких: федеральные клинические рекомендации по диагностике и лечению. Пульмонология. 32(3), 356–392.
- Agustí A., Celli B.R., Criner G.J., Halpin D., Anzueto A., Barnes P., Bourbeau J., Han M.K., Martinez F.J., Montes de Oca M., Mortimer K., Papi A., Pavord I., Roche N., Salvi S., Sin D.D., Singh D., Stockley R., López Varela M.V., Wedzicha J.A., Vogelmeier C.F. (2023) Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur. Respir. J. 61(4), 2300239.
- Ragland M.F., Benway C.J., Lutz S.M., Bowler R.P., Hecker J., Hokanson J.E., Crapo J.D., Castaldi P.J., DeMeo D.L., Hersh C.P., Hobbs B.D., Lange C., Beaty T.H., Cho M.H., Silverman E.K. (2019) Genetic advances in chronic obstructive pulmonary disease. insights from COPDGene. Am. J. Respir. Crit. Care Med. 200(6), 677–690.
- Choudhury G., MacNee W. (2017) Role of inflammation and oxidative stress in the pathology of ageing in COPD: potential therapeutic interventions. COPD. 14(1), 122–135.
- Aghali A., Koloko Ngassie M.L., Pabelick C.M., Prakash Y.S. (2022) Cellular senescence in aging lungs and diseases. Cells. 11(11), 1781.
- Birch J., Anderson R.K., Correia-Melo C., Jurk D., Hewitt G., Marques F.M., Green N.J., Moisey E., Birrell M.A., Belvisi M.G., Black F., Taylor J.J., Fisher A.J, De Soyza A., Passos J.F. (2015) DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 309(10), L1124–1137.
- Barnes P.J., Baker J., Donnelly L.E. (2019) Cellular senescence as a mechanism and target in chronic lung diseases. Am. J. Respir. Crit. Care Med. 200(5), 556–564.
- Brandsma C.A., de Vries M., Costa R., Woldhuis R.R., Königshoff M., Timens W. (2017) Lung ageing and COPD: is there a role for ageing in abnormal tissue repair? Eur. Respir. Rev. 26(146), 170073.
- Puvvula P.K. (2019) LncRNAs regulatory networks in cellular senescence. Int. J. Mol. Sci. 20(11), 2615.
- Long Y., Wang X., Youmans D.T., Cech T.R. (2017) How do lncRNAs regulate transcription? Sci. Adv. 3(9), eaao2110.
- Ferrè F., Colantoni A., Helmer-Citterich M. (2016) Revealing protein-lncRNA interaction. Brief Bioinform. 17(1), 106–116.
- Маркелов В.А., Корытина Г.Ф., Азнабаева Ю.Г., Зулкарнеев Ш.Р., Ахмадишина Л.З., Загидуллин Н.Ш. (2023) Роль сигнальных путей, вовлеченных в механизмы клеточного старения, и регуляторных некодирующих РНК в развитии хронической обструктивной болезни легких. Гены и клетки. 18(2), 93–108.
- Lu Q., Guo Q., Xin M., Lim C., Gamero A.M., Gerhard G.S., Yang L. (2021) LncRNA TP53TG1 promotes the growth and migration of hepatocellular carcinoma cells via activation of ERK signaling. Noncoding RNA. 7(3), 52.
- Chen B., Lan J., Xiao Y., Liu P., Guo D., Gu Y., Song Y., Zhong Q., Ma D., Lei P., Liu Q. (2021) Long noncoding RNA TP53TG1 suppresses the growth and metastasis of hepatocellular carcinoma by regulating the PRDX4/β-catenin pathway. Cancer Lett. 513, 75–89.
- Ersahin T., Tuncbag N., Cetin-Atalay R. (2015) The PI3K/AKT/mTOR interactive pathway. Mol. Biosyst. 11(7), 1946–1954. doi: 10.1039/c5mb00101c. PMID: 25924008.
- Wang L., Chen Z., An L., Wang Y., Zhang Z., Guo Y., Liu C. (2016) Analysis of long non-coding RNA expression profiles in non-small cell lung cancer. Cell. Physiol. Biochem. 38(6), 2389–400.
- Chen Q.F., Kong J.L., Zou S.C., Gao H., Wang F., Qin S.M., Wang W. (2019) LncRNA LINC00342 regulated cell growth and metastasis in non-small cell lung cancer via targeting miR-203a-3p. Eur. Rev. Med. Pharmacol. Sci. 23(17), 7408–7418.
- Tang H., Zhao L., Li M., Li T., Hao Y. (2019) Investigation of LINC00342 as a poor prognostic biomarker for human patients with non-small cell lung cancer. J. Cell. Biochem. 120(4), 5055–5061.
- Fellah S., Larrue R. Truchi M., Vassaux G., Mari B., Cauffiez C., Pottier N. (2023) Pervasive role of the long noncoding RNA DNM3OS in development and diseases. Wiley Interdiscip. Rev. RNA. 14(2), e1736.
- Savary G., Dewaeles E., Diazzi S., Buscot M., Nottet N., Fassy J., Courcot E., Henaoui I.S., Lemaire J., Martis N., Van der Hauwaert C., Pons N., Magnone V., Leroy S., Hofman V., Plantier L., Lebrigand K., Paquet A., Lino Cardenas C.L., Vassaux G., Hofman P., Günther A., Crestani B., Wallaert B., Rezzonico R., Brousseau T., Glowacki F., Bellusci S., Perrais M., Broly F., Barbry P., Marquette C.H., Cauffiez C., Mari B., Pottier N. (2019) The long noncoding RNA DNM3OS Is a reservoir of fibromiRs with major functions in lung fibroblast response to TGF-β and pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 200(2), 184–198.
- Zeng R., Zhang R., Song X., Ni L, Lai Z., Liu C., Ye W. (2018) The long non-coding RNA MALAT1 activates Nrf2 signaling to protect human umbilical vein endothelial cells from hydrogen peroxide. Biochem. Biophys. Res. Commun. 495(4), 2532–2538.
- Ghafouri-Fard S., Esmaeili M., Taheri M. (2020) H19 lncRNA: roles in tumorigenesis. Biomed. Pharmacother. 123, 109774.
- Lu Q., Guo Z., Xie W., Jin W., Zhu D., Chen S., Ren T. (2018) The lncRNA H19 mediates pulmonary fibrosis by regulating the miR-196a/COL1A1 axis. Inflammation. 41(3), 896–903.
- Xu J.L., Hua T., Ding J., Fan Y., Liu Z.J., Lian J.W. (2019) FOXF2 aggravates the progression of non-small cell lung cancer through targeting lncRNA H19 to down regulate PTEN. Eur. Rev. Med. Pharmacol. Sci. 23(24), 10796–10802.
- Al-Rugeebah A., Alanazi M., Parine N.R. (2019) MEG3: an oncogenic long non-coding RNA in different cancers. Pathol. Oncol. Res. 25(3), 859–874.
- Zhan H., Sun X., Wang X., Gao Q., Yang M., Liu H., Zheng J., Gong X., Feng S., Chang X., Sun Y. (2021) LncRNA MEG3 involved in NiO NPs-induced pulmonary fibrosis via regulating TGF-β1-mediated PI3K/AKT pathway. Toxicol. Sci. 182(1), 120–131.
- Cai B., Yang L., Do Jung Y., Zhang Y., Liu X., Zhao P., Li J. (2022) PTEN: аn еmerging potential target for therapeutic intervention in respiratory diseases. (2022) Oxid. Med. Cell. Longev. 4512503.
- Chen C.Y., Chen J., He L., Stiles B.L. (2018) PTEN: tumor suppressor and metabolic regulator. Front. Endocrinol. 9, 338.
- Ishtiaq Ahmed A.S., Bose G.C., Huang L., Azhar M. (2014) Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor beta2 gene. Genesis. 52(9), 817–826.
- Schepers D., Tortora G., Morisaki H., MacCarrick G., Lindsay M., Liang D., Mehta S.G., Hague J., Verhagen J., van de Laar I., Wessels M., Detisch Y., van Haelst M., Baas A., Lichtenbelt K., Braun K., van der Linde D., Roos-Hesselink J., McGillivray G., Meester J., Maystadt I., Coucke P., El-Khoury E., Parkash S., Diness B., Risom L., Scurr I., Hilhorst-Hofstee Y., Morisaki T., Richer J., Désir J., Kempers M., Rideout A.L., Horne G., Bennett C., Rahikkala E., Vandeweyer G., Alaerts M., Verstraeten A., Dietz H., Van Laer L., Loeys B. (2018) A mutation update on the LDS-associated genes TGFB2/3 and SMAD2/3. Hum. Mutat. 39(5), 621–634.
- Stefanetti R.J., Voisin S., Russell A., Lamon S. (2018) Recent advances in understanding the role of FOXO3. F1000Res. 7, F1000 Fac. Rev–1372.
- Bellezza I., Giambanco I., Minelli A., Donato R. (2018) Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell. Res. 1865(5), 721–733.
- Cheng L., Wang P., Tian R., Wang S., Guo Q., Luo M., Zhou W., Liu G., Jiang H., Jiang Q. (2019) LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucl. Acids Res. 47(D1), D140–D144.
- Livak K.J., Schmittgen T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25(4), 402–408.
- Lin W., Liu H., Tang Y., Wei Y., Wei W., Zhang L., Chen J. (2021) The development and controversy of competitive endogenous RNA hypothesis in non-coding genes. Mol. Cell. Biochem. 476(1), 109–123.
- Bosson A.D., Zamudio J.R., Sharp P.A. (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Сell. 56(3), 347–359.
- Jens M., Rajewsky N. (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genetics. 16(2), 113–126.
- Yuan Y., Liu B., Xie P., Zhang M. Q., Li Y., Xie Z., Wang X. (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA. 112(10), 3158–3163.
- Ebert M.S., Neilson J.R., Sharp P.A. (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Мethods. 4(9), 721–726.
- Xiao H., Liu Y., Liang P., Wang B., Tan H., Zhang Y., Gao X., Gao J. (2018) TP53TG1 enhances cisplatin sensitivity of non-small cell lung cancer cells through regulating miR-18a/PTEN axis. Cell Biosci. 8, 23.
- Sun J., Guo Y., Chen T., Jin T., Ma L., Ai L., Guo J., Niu Z., Yang R., Wang Q., Yu X., Gao H., Zhang Y., Su W., Song X., Ji W., Zhang Q., Huang M., Fan X., Du Z., Liang H. (2022) Systematic analyses identify the anti-fibrotic role of lncRNA TP53TG1 in IPF. Cell Death Dis. 13(6), 525.
- Su H., Yu S., Sun F., Lin D., Liu P,. Zhao L. (2022) LINC00342 induces metastasis of lung adenocarcinoma by targeting miR-15b/TPBG. Acta Biochim. Pol. 69(2), 291–297.
- Fan Q., Jian Y. (2020) MiR-203a-3p regulates TGF-β1-induced epithelial-mesenchymal transition (EMT) in asthma by regulating Smad3 pathway through SIX1. Biosci. Rep. 40(2), BSR20192645.
- van Nijnatten J., Brandsma C.A., Steiling K., Hiemstra P.S., Timens W., van den Berge M., Faiz A. (2022) High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD. Sci. Rep. 12(1), 5610.
- Yu H., Qi N., Zhou Q. (2021) LncRNA H19 inhibits proliferation and migration of airway smooth muscle cells induced by PDGF-BB through miR-21/PTEN/Akt Axis. J. Asthma Allergy. 14, 71–80.
- Gutschner T., Hämmerle M., Eissmann M., Hsu J., Kim Y., Hung G., Revenko A., Arun G., Stentrup M., Gross M., Zörnig M., MacLeod A.R., Spector D.L., Diederichs S. (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 73(3), 1180–1189.
- Lu L., Luo F., Liu Y., Liu X., Shi L., Lu X., Liu Q. (2015) Posttranscriptional silencing of the lncRNA MALAT1 by miR-217 inhibits the epithelial-mesenchymal transition via enhancer of zeste homolog 2 in the malignant transformation of HBE cells induced by cigarette smoke extract. Toxicol. Appl. Pharmacol. 289(2), 276–285.
- Chen W., Zhao W., Zhang L., Wang L., Wang J., Wan Z., Hong Y., Yu L. (2017) MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway. Oncotarget. 8(55), 94317–94329.
- Tang Y., Xiao G., Chen Y., Deng Y. (2018) LncRNA MALAT1 promotes migration and invasion of non-small-cell lung cancer by targeting miR-206 and activating Akt/mTOR signaling. Anticancer Drugs. 29(8), 725–735.
- Green C.E., Clarke J., Bicknell R., Turner A.M. (2021) Pulmonary microRNA сhanges alter angiogenesis in chronic obstructive pulmonary disease and lung сancer. Biomedicines. 9(7), 830.
- Shen Y., Yang Y., Li Y. (2020) MiR-133a acts as a tumor suppressor in lung cancer progression by regulating the LASP1 and TGF-β/Smad3 signaling pathway. Thorac. Cancer. 11(12), 3473–3481.
- Gokey J.J., Snowball J., Sridharan A., Speth J.P., Black K.E., Hariri L.P., Perl A.T., Xu Y., Whitsett J.A. (2018) MEG3 is increased in idiopathic pulmonary fibrosis and regulates epithelial cell differentiation. JCI Insight. 3(17), e122490.
- Li W., Qiu X., Jiang H., Han Y., Wei D., Liu J. (2016) Downregulation of miR-181a protects mice from LPS-induced acute lung injury by targeting Bcl-2. Biomed. Pharmacother. 84, 1375–1382.
- Su Y., Silva J.D., Doherty D., Simpson D.A., Weiss D.J., Rolandsson-Enes S., McAuley D.F., O´Kane C.M., Brazil D.P., Krasnodembskaya A.D. (2023) Mesenchymal stromal cells-derived extracellular vesicles reprogramme macrophages in ARDS models through the miR-181a-5p-PTEN-pSTAT5-SOCS1 axis. Thorax. 78(6), 617–630.
- Ma J., Chen S., Liu Y., Han H., Gong M. Song Y. (2022) The role of exosomal miR-181b in the crosstalk between NSCLC cells and tumor-associated macrophages. Genes Genomics. 44(10), 1243–1258.
- Wu H., Ma H., Wang L., Zhang H., Lu L., Xiao T., Cheng C., Wang P., Yang Y., Wu M., Wang S., Zhang J., Liu Q. (2022) Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. Int. J. Biol. Sci. 18(2), 661–674.
- Zhao Y., Li A. (2021) miR-19b-3p relieves intervertebral disc degeneration through modulating PTEN/PI3K/Akt/mTOR signaling pathway. Aging. 13(18), 22459–22473.
- Li H., Zhang P., Sun X., Sun Y., Shi C., Liu H., Liu X. (2015) MicroRNA-181a regulates epithelial-mesenchymal transition by targeting PTEN in drug-resistant lung adenocarcinoma cells. Int. J. Oncol. 47(4), 1379–1392.
- Horita H., Wysoczynski C.L., Walker L.A., Moulton K.S., Li M., Ostriker A., Tucker R., McKinsey T.A., Churchill M.E., Nemenoff R.A., Weiser-Evans M.C. (2016) Nuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation. Nat. Commun. 7, 10830.
- Chen G., Yu L., Dong H., Liu Z., Sun Y. (2019) MiR-182 enhances radioresistance in non-small cell lung cancer cells by regulating FOXO3. Clin. Exp. Pharmacol. Physiol. 46(2), 137–143.
- Wang S., Sun Y., Yao L., Xing Y., Yang H. Ma Q. (2024) The role of microRNA-23a-3p in the progression of human aging process by targeting FOXO3a. Mol. Biotechnol. 66(2), 277–287.
- Wang Y.Q., Cao Q., Wang F., Huang L.Y., Sang T.T., Liu F., Chen S.Y. (2015) SIRT1 protects against oxidative stress-induced endothelial progenitor cells apoptosis by inhibiting FOXO3a via FOXO3a ubiquitination and degradation. J. Cell. Physiol. 230(9), 2098–2107.
- Zhang C., Kong X., Ma D. (2020) miR-141-3p inhibits vascular smooth muscle cell proliferation and migration via regulating Keap1/Nrf2/HO-1 pathway. IUBMB Life. 72(10), 2167–2179.
- Thu K.L., Pikor L.A., Chari R., Wilson I.M., Macaulay C.E., English J.C., Tsao M.S., Gazdar A.F., Lam S., Lam W.L., Lockwood W.W. (2011) Genetic disruption of KEAP1/CUL3 E3 ubiquitin ligase complex components is a key mechanism of NF-kappaB pathway activation in lung cancer. J. Thorac. Oncol. 6(9), 1521–1529.
- Liao H., Liang Y., Kang L., Xiao Y., Yu T., Wan R. (2021) miR4543p inhibits nonsmall cell lung cancer cell proliferation and metastasis by targeting TGFB2. Oncol. Rep. 45(5), 67.
- Zhong L., Yang H., Zhu B., Zhao X., Xie M., Cao M., Liu C., Zhao D., Lyu Y., Shang W., Wang B., Wu Y., Sun X., Qiu G., Fu W., Jiang H. (2022) The TBX1/miR-193a-3p/TGF-β2 axis mediates CHD by promoting ferroptosis. Oxid. Med. Cell. Longev. 2022, 5130546.
- Paliwal S., Shi J., Dhru U., Zhou Y., Schuger L. (2004) P311 binds to the latency associated protein and downregulates the expression of TGF-beta1 and TGF-beta2. Biochem. Biophys. Res. Commun. 315(4), 1104–1109.
- Khankan R., Oliver N., He S., Ryan S.J., Hinton D.R. (2011) Regulation of fibronectin-EDA through CTGF domain-specific interactions with TGFβ2 and its receptor TGFβRII. Invest. Ophthalmol. Vis. Sci. 52(8), 5068–5078.
- Yang B., Bai J., Shi R., Shao X., Yang Y., Jin Y., Che X., Zhang Y., Qu X., Liu Y., Li Z. (2020) TGFB2 serves as a link between epithelial-mesenchymal transition and tumor mutation burden in gastric cancer. Int. Immunopharmacol. 84, 106532.
- Li Q., Zhang C., Chen R., Xiong H., Qiu F., Liu S., Zhang M., Wang F., Wang Y., Zhou X., Xiao G., Wang X., Jiang Q. (2016) Disrupting MALAT1/miR-200c sponge decreases invasion and migration in endometrioid endometrial carcinoma. Cancer Lett. 383(1), 28–40.
- Yang S., Banerjee S., de Freitas A., Sanders Y.Y., Ding Q., Matalon S., Thannickal V.J., Abraham E., Liu G. (2011) Participation of miR-200 in pulmonary fibrosis. Am. J. Pathol. 180(2), 484–493.
- Lin W., Liu H., Tang Y., Wei Y., Wei W., Zhang L., Chen J. (2021) The development and controversy of competitive endogenous RNA hypothesis in non-coding genes. Mol. Сell. Biochem. 476(1), 109–123.
- Zhang X., Xu J., Wang J., Gortner L., Zhang S., Wei X., Song J., Zhang Y., Li Q., Feng Z. (2013) Reduction of microRNA-206 contributes to the development of bronchopulmonary dysplasia through up-regulation of fibronectin 1. PLoS One. 8(9), e74750.
- Song J., Su Z.Z., Shen Q.M. (2020) Long non-coding RNA MALAT1 regulates proliferation, apoptosis, migration and invasion via miR-374b-5p/SRSF7 axis in non-small cell lung cancer. Eur. Rev. Med. Pharmacol. Sci. 24(4), 1853–1862.
- Andreas A., Maloy A., Nyunoya T., Zhang Y., Chandra D. (2022) The FoxP1 gene regulates lung function, production of matrix metalloproteinases and inflammatory mediators, and viability of lung epithelia. Respir. Res. 23(1), 281.
- Wei S., Wang K., Huang X., Tang W., Zhao Z., Zhao Z. (2019) Knockdown of the lncRNA MALAT1 alleviates lipopolysaccharideinduced A549 cell injury by targeting the miR175p/FOXA1 axis. Mol. Med. Rep. 20(2), 2021–2029.
- Liu H., Shi C., Deng Y. (2020) MALAT1 affects hypoxia-induced vascular endothelial cell injury and autophagy by regulating miR-19b-3p/HIF-1α axis. Mol. Cell. Biochem. 466(1–2), 25–34.
- Baumgartner U., Berger F., Hashemi Gheinani A., Burgener S.S., Monastyrskaya K., Vassella E. (2018) МiR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer. Mol. Cancer. 17(1), 44.
- Zhang Z., Li M., Zhang Z. (2020) lncRNA MALAT1 modulates oxaliplatin resistance of gastric cancer via sponging miR-22-3p. OncoTargets. Therapy. 13, 1343–1354.
- Yang K., Li W., Duan W., Jiang Y., Huang N., Li Y., Ren B., Sun J. (2019) Resveratrol attenuates pulmonary embolism associated cardiac injury by suppressing activation of the inflammasome via the MALAT1miR223p signaling pathway. Int. J. Mol. Med. 44(6), 2311–2320.
- Zhou Q., Run Q., Li C.Y., Xiong X.Y., Wu X.L. (2020) LncRNA MALAT1 рromotes STAT3-mediated endothelial inflammation by counteracting the function of miR-590. Cytogenet. Genome Res. 160(10), 565–578.
- Shen F., Zheng H., Zhou L., Li W., Xu X. (2019) Overexpression of MALAT1 contributes to cervical cancer progression by acting as a sponge of miR-429. J. Сell. Рhysiol. 234(7), 11219–11226.
- Liu C., Zhuo H., Ye M.Y., Huang G.X., Fan M., Huang X.Z. (2020) LncRNA MALAT1 promoted high glucose-induced pyroptosis of renal tubular epithelial cell by sponging miR-30c targeting for NLRP3. Kaohsiung J. Med. Sci. 36(9), 682–691.
- Lai X., Zhong J., Zhang A., Zhang B., Zhu T., Liao R. (2022) Focus on long non-coding RNA MALAT1: insights into acute and chronic lung diseases. Front. Genet. 13, 1003964.
- Hu T.J., Huang H.B., Shen H.B., Chen W., Yang Z.H. (2020) Role of long non-coding RNA MALAT1 in chronic obstructive pulmonary disease. Exp. Ther. Med. 20(3), 2691–2697.
- Liu S., Liu M., Dong L. (2020) The clinical value of lncRNA MALAT1 and its targets miR-125b, miR-133, miR-146a, and miR-203 for predicting disease progression in chronic obstructive pulmonary disease patients. J. Clin. Lab. Anal. 34(9), e23410.
- Barnes P.J. (2016) Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 138(1), 16–27.
- Shen P., Qu L., Wang J., Ding Q., Zhou C., Xie R., Wang H., Ji G. (2021) LncRNA LINC00342 contributes to the growth and metastasis of colorectal cancer via targeting miR-19a-3p/NPEPL1 axis. Cancer Cell Int. 21(1), 105.
- Chen Q.F., Kong J.L., Zou S.C., Gao H., Wang F., Qin S.M., Wang W. (2019) LncRNA LINC00342 regulated cell growth and metastasis in non-small cell lung cancer via targeting miR-203a-3p. Eur. Rev. Med. Pharmacol. Sci. 23(17), 7408–7418.
- Shao M., Ma H., Wan X., Liu Y. (2020) Survival analysis for long noncoding RNAs identifies TP53TG1 as an antioncogenic target for the breast cancer. J. Cell. Physiol. 235(10), 6574–6581.
- Deng H., Schwartz M.A. (2022) High fluid shear stress inhibits cytokine-driven Smad2/3 activation in vascular endothelial cells. J. Am. Heart Assoc. 11(14), e025337.
- Zhu Y., Chen X., Mi L., Wang Q., Zhu H., Ju H., Lu H. (2020) Sumoylation of CCAAT-enhancer-binding protein α inhibits lung differentiation in bronchopulmonary dysplasia model rats. J. Cell. Mol. Med. 24(12), 7067–7071.
- Ghosh A.J., Hobbs B.D., Yun J.H., Saferali A., Moll M., Xu Z., Chase R.P., Morrow J., Ziniti J., Sciurba F., Barwick L., Limper A.H., Flaherty K., Criner G., Brown K.K., Wise R., Martinez F.J., McGoldrick D., Cho M.H., DeMeo D.L., Silverman E.K., Castaldi P.J, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Hersh C.P. (2022) Lung tissue shows divergent gene expression between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Respir. Res. 23(1), 97.
- He L., He G. (2021) DNM3OS facilitates ovarian cancer progression by regulating miR-193a-3p/MAP3K3 axis. Yonsei Med. J. 62(6), 535–544.
- Fang X., Tang Z., Zhang H., Quan H. (2020) Long non-coding RNA DNM3OS/miR-204-5p/HIP1 axis modulates oral cancer cell viability and migration. J. Oral. Pathol. Med. 49(9), 865–875.
- Liu Y., Guan H., Zhang J.L., Zheng Z., Wang H.T., Tao K., Han S.C., Su L.L., Hu D. (2018) Acute downregulation of miR-199a attenuates sepsis-induced acute lung injury by targeting SIRT1. Am. J. Physiol. Cell. Physiol. 314(4), С449–C455.
- Mizuno S., Bogaard H.J., Gomez-Arroyo J., Alhussaini A., Kraskauskas D., Cool C.D., Voelkel N.F. (2012) MicroRNA-199a-5p is associated with hypoxia-inducible factor-1α expression in lungs from patients with COPD. Chest. 142(3), 663–672.
补充文件
