P62: intersection of antioxidant defense and autophagy pathways
- Authors: Shilovsky G.A.1,2
-
Affiliations:
- Lomonosov Moscow State University
- Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
- Issue: Vol 58, No 5 (2024)
- Pages: 703-718
- Section: СТАРЕНИЕ И ГЕРОПРОТЕКТОРНЫЕ ТЕХНОЛОГИИ
- URL: https://journals.rcsi.science/0026-8984/article/view/281582
- DOI: https://doi.org/10.31857/S0026898424050036
- EDN: https://elibrary.ru/HURISK
- ID: 281582
Cite item
Abstract
Numerous regulatory cascades link the cell´s response to oxidative stress and the mechanisms of maintaining homeostasis and cell viability. The review summarizes the molecular mechanisms of interaction of the autophagy protein p62 with cell defense systems, primarily through the NRF2/KEAP1/ARE pathway. Understanding the cross-regulation of antioxidant defense and autophagy pathways contributes to the search for promising molecular targets for the treatment of age-related diseases.
Keywords
Full Text

About the authors
G. A. Shilovsky
Lomonosov Moscow State University; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences
Author for correspondence.
Email: gregory_sh@list.ru
Faculty of Biology
Russian Federation, Moscow, 119234; Moscow, 127051References
- Zhang W., Feng C., Jiang H. (2021) Novel target for treating Alzheimer´s diseases: crosstalk between the Nrf2 pathway and autophagy. Ageing Res. Rev. 65, 101207. doi: 10.1016/j.arr.2020.101207
- Shakya A., McKee N.W., Dodson M., Chapman E., Zhang D.D. (2023) Anti-ferroptotic effects of Nrf2: beyond the antioxidant response. Mol. Cells. 46, 165–175. doi: 10.14348/molcells.2023.0005
- Baykal-Köse S., Efe H., Yüce Z. (2021) Аутофагия не влияет на ответ линии клеток хронического миелоидного лейкоза, устойчивой к иматинибу, на ингибиторы тирозинкиназ. Молекуляр. биология. 55(4), 626–633. doi: 10.31857/S002689842104004
- Зиновкин Р.А., Гребенчиков О.А. (2020) Активация транскрипционного фактора Nrf2 как подход к предотвращению цитокинового шторма при COVID-19. Биохимия. 85(7), 978–983. doi: 10.31857/S0320972520070118
- Шиловский Г.А., Путятина Т.С, Моргунова Г.В., Селиверстов А.В., Ашапкин В.В., Сорокина Е.В., Марков А.В., Скулачев В.П. (2021) Регуляция белков циркадных ритмов и nrf2-опосредованной антиоксидантной защиты: двойная роль киназы гликогенсинтазы 3. Биохимия. 86(4), 511–528. doi: 10.31857/S0320972521040059
- Зиновкин Р.А., Кондратенко Н.Д., Зиновкина Л.А. (2022) Является ли Nrf2 основным регулятором старения млекопитающих? Биохимия. 87(12), 1842–1855. doi: 10.31857/S0320972522120053
- Шиловский Г.А. (2022) Лабильность защитной системы клетки Nrf2/Keap/ARE в различных моделях клеточного старения возрастных патологиях. Биохимия. 87(1), 86–103. doi: 10.31857/S0320972522010067
- Кондратенко Н.Д., Зиновкина Л.А., Зиновкин Р.А. (2023) Транскрипционный фактор NRF2 в функционировании эндотелия. Молекуляр. биология. 57(6), 1058–1076. doi: 10.31857/S0026898423060101
- Cloer E.W., Siesser P.F., Cousins E.M., Goldfarb D., Mowrey D.D., Harrison J.S., Weir S.J., Dokholyan N.V., Major M.B. (2018) p62-dependent phase separation of patient-derived Keap1 mutations Nrf2. Mol. Cell. Biol. 38(22), e00644-17. doi: 10.1128/MCB.00644-17
- Lo S.-C., Hannink M. (2006) PGAM5, a Bcl-XL-interacting protein, is a novel substrate for the redox-regulated Keap1-dependent ubiquitin ligase complex. J. Biol. Chem. 281, 37893–37903. doi: 10.1074/jbc.M606539200
- O´Mealey G.B., Plafker K.S., Berry W.L., Janknecht R., Chan J.Y., Plafker S.M. (2017) A PGAM5-Keap1-Nrf2 complex is required for stress-induced mitochondrial retrograde trafficking. J. Cell Sci. 130, 3467–3480. doi: 10.1242/jcs.203216
- Yamada T., Murata D., Adachi Y., Itoh K., Kameoka S., Igarashi A., Kato T., Araki Y., Huganir R.L., Dawson T.M., Yanagawa T., Okamoto K., Iijima M., Sesaki H. (2018) Mitochondrial stasis reveals p62-mediated ubiquitination in PARKIN-independent mitophagy and mitigates nonalcoholic fatty liver disease. Cell Metab. 28, 588–604.e5. doi: 10.1016/j.cmet.2018.06.014
- Rada P., Rojo A.I., Evrard-Todeschi N., Innamorato N.G., Cotte A., Jaworski T., Tobón-Velasco J.C., Devijver H., García-Mayoral M.F., Van Leuven F., Hayes J.D., Bertho G., Cuadrado A. (2012) Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis. Mol. Cell. Biol. 32(17), 3486–3499. doi: 10.1128/MCB.00180-12
- Komatsu M., Kurokawa H., Waguri S., Taguchi K., Kobayashi A., Ichimura Y., Sou Y.S., Ueno I., Sakamoto A., Tong K.I., Kim M., Nishito Y., Iemura S., Natsume T., Ueno T., Kominami E., Motohashi H., Tanaka K., Yamamoto M. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12(3), 213–223. doi: 10.1038/ncb2021
- Jain A., Lamark T., Sjøttem E., Larsen K.B., Awuh JA., Øvervatn A., McMahon M., Hayes J.D., Johansen T. (2010) p62/SQSTM1 is a target gene for transcription factor Nrf2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285(29), 22576–22591. doi: 10.1074/jbc.M110.118976
- Lamark T., Svenning S., Johansen T. (2017) Regulation of selective autophagy: the p62/SQSTM1 paradigm. Essays Biochem. 61, 609–624. doi: 10.1042/EBC20170035
- Taguchi K., Fujikawa N., Komatsu M., Ishii T., Unno M., Akaike T., Motohashi H., Yamamoto M. (2012) Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc. Natl. Acad. Sci. USA. 109, 13561–13566. doi: 10.1073/pnas.1121572109
- Zhang D.D., Lo S.-C., Sun Z., Habib G.M., Lieberman M.W., Hannink M. (2005) Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J. Biol. Chem. 280, 30091–30099. doi: 10.1074/jbc.M501279200
- Duran A., Amanchy R., Linares J.F., Joshi J., Abu-Baker S., Porollo A., Hansen M., Moscat J., Diaz-Meco M.T. (2011) p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol. Cell. 44(1), 134–146. doi: 10.1016/j.molcel.2011.06.038
- Switon K., Kotulska K., Janusz-Kaminska A., Zmorzynska J., Jaworski J. (2017) Molecular neurobiology of mTOR. Neuroscience. 341, 112–153. doi: 10.1016/j.neuroscience.2016.11.017
- Murugan A.K. (2019) mTOR: Role in cancer, metastasis and drug resistance. Semin. Cancer Biol. 59, 92–111. doi: 10.1016/j.semcancer.2019.07.003
- Kim J., Cha Y.-N., Surh Y.-J. (2010) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 690(1–2), 12–23. doi: 10.1016/j.mrfmmm.2009.09.007
- Pickering A.M., Linder R.A., Zhang H., Forman H.J., Davies K.J.A. (2012) Nrf2-dependent induction of proteasome and Pa28αβ regulator ARE required for adaptation to oxidative stress. J. Biol. Chem. 287(13), 10021–10031. doi: 10.1074/jbc.M111.277145
- Ghanim B.Y., Qinna N.A. (2022) Nrf2/ARE axis signalling in hepatocyte cellular death. Mol. Biol. Rep. 49(5), 4039–4053. doi: 10.1007/s11033-022-07125-6
- Johansen T., Lamark T. (2011) Selective autophagy mediated by autophagic adapter proteins. Autophagy. 7, 279–296. doi: 10.4161/auto.7.3.14487
- Copple I.M., Lister A., Obeng A.D., Kitteringham N.R., Jenkins R.E., Layfield R., Foster B.J., Goldring C.E., Park B.K. (2010) Physical functional interaction of sequestosome 1 with Keap1 regulates the Keap1–Nrf2 cell defense pathway. J. Biol. Chem. 285, 16782–16788. doi: 10.1074/jbc.M109.096545
- Katsuragi Y., Ichimura Y., Komatsu M. (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 282, 4672–4678.
- Carroll B., Otten E.G., Manni D., Stefanatos R., Menzies F.M., Smith G.R., Jurk D., Kenneth N., Wilkinson S., Passos J.F., Attems J., Veal E.A., Teyssou E., Seilhean D., Millecamps S., Eskelinen E.L., Bronowska A.K., Rubinsztein D.C., Sanz A., Korolchuk V.I. (2018) Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nat. Commun. 9, 256. doi: 10.1038/s41467-017-02746-z
- Rogov V., Dotsch V., Johansen T., Kirkin V. (2014) Interactions between autophagy receptors and ubiquitin like proteins form the molecular basis for selective autophagy. Mol. Cell. 53(2), 167–178. doi: 10.1016/j.molcel.2013.12.014
- Dokladny K., Zuhl M.N., Mandell M., Bhattacharya D., Schneider S., Deretic V., Moseley P.L. (2013) Regulatory coordination between two major intracellular homeostatic systems: heat shock response autophagy. J. Biol. Chem. 288(21), 14959–14972. doi: 10.1074/jbc.M113.462408
- Krämer L., Groh C., Herrmann J.M. (2021) The proteasome: friend and foe of mitochondrial biogenesis. FEBS Lett. 595(8), 1223–1238. doi: 10.1002/1873-3468.14010
- Jin S.M., Lazarou M., Wang C., Kane L.A., Narendra D.P., Youle R.J. (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942. doi: 10.1083/jcb.201008084
- Novak I. (2012) Mitophagy: a complex mechanism of mitochondrial removal. Antioxid. Redox Signal. 17(5), 794–802. doi: 10.1089/ars.2011.4407
- Sanz L., Sanchez P., Lallena M.-J., Diaz-Meco M.T., Moscat J. (1999) The interaction of p62 with RIP links the atypical PKCs to NF-κB activation. EMBO J. 18(11), 3044–3053. doi: 10.1093/emboj/18.11.3044
- Choe J.Y., Jung H.Y., Park K.Y., Kim S.K. (2014) Enhanced p62 expression through impaired proteasomal degradation is involved in caspase-1 activation in monosodium urate crystal-induced interleukin-1β expression. Rheumatology (Oxford). 53(6), 1043–1053. doi: 10.1093/rheumatology/ket474
- Geisler S., Holmström K.M., Skujat D., Fiesel F.C., Rothfuss O.C., Kahle P.J., Springer W. (2010) PINK1/PARKIN-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131. doi: 10.1038/ncb2012
- Yamada T., Dawson T.M., Yanagawa T., Iijima M., Sesaki H. (2019) SQSTM1/p62 promotes mitochondrial ubiquitination independently of PINK1 and PRKN/PARKIN in mitophagy. Autophagy. 15, 2012–2018. doi: 10.1080/15548627.2019.1643185
- Sulkshane P., Ram J., Thakur A., Reis N., Kleifeld O., Glickman M.H. (2021) Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol. 45, 102047. doi: 10.1016/j.redox.2021.102047
- Chu C.T. (2019) Mechanisms of selective autophagy and mitophagy: implications for neurodegenerative diseases. Neurobiol. Dis. 122, 23–34. doi: 10.1016/j.nbd.2018.07.015
- Pankiv S., Clausen T.H., Lamark T., Brech A., Bruun J.A., Outzen H., Øvervatn A., Bjørkøy G., Johansen T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282(33), 24131–24145. doi: 10.1074/jbc.M702824200
- Boyle K.B., Randow F. (2013) The role of “eat-me” signals and autophagy cargo receptors in innate immunity. Curr. Opin. Microbiol. 16(3), 339–348. doi: 10.1016/j.mib.2013.03.010
- Korac J., Schaeffer V., Kovacevic I., Clement A.M., Jungblut B., Behl C., Terzic J., Dikic I. (2013) Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 126(Pt. 2), 580–592. doi: 10.1242/jcs.114926
- Jo C., Gundemir S., Pritchard S., Jin Y.N., Rahman I., Johnson G.V. (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat. Commun. 5, 3496. doi: 10.1038/ncomms4496
- Inomata M., Niida S., Shibata K., Into T. (2012) Regulation of Toll-like receptor signaling by NDP52-mediated selective autophagy is normally inactivated by A20. Cell. Mol. Life Sci. 69(6), 963–979. doi: 10.1007/s00018-011-0819-y
- Yang M., Wang L., Chen C., Guo X., Lin C., Huang W., Chen L. (2021) Genome-wide analysis of autophagy-related genes in Medicago truncatula highlights their roles in seed development and response to drought stress. Sci. Rep. 11(1), 22933. doi: 10.1038/s41598-021-02239-6
- Zhou J., Wang J., Cheng Y., Chi Y.J., Fan B., Yu J.Q., Chen Z. (2013) NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet. 9(1), e1003196. doi: 10.1371/journal.pgen.1003196
- Zientara-Rytter K., Sirko A. (2014) Significant role of PB1 and UBA domains in multimerization of Joka2, a selective autophagy cargo receptor from tobacco. Front. Plant Sci. 5, 13. doi: 10.3389/fpls.2014.00013
- Long J., Garner T.P., Pandya M.J., Craven C.J., Chen P., Shaw B., Williamson M.P., Layfield R., Searle M.S. (2010) Dimerisation of the UBA domain of p62 inhibits ubiquitinbinding and regulates NF-B signalling. J. Mol. Biol. 396(1), 178–194. doi: 10.1016/j.jmb.2009.11.032
- Matsumoto G., Shimogori T., Hattori N., Nukina N. (2015) TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum. Mol. Genet. 24(15), 4429–4442. doi: 10.1093/hmg/ddv179
- Wurzer B., Zaffagnini G., Fracchiolla D., Turco E., Abert C., Romanov J., Martens S. (2015) Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. Elife. 4, e08941. doi: 10.7554/eLife.08941
- Nagy P., Hegedus K., Pircs K., Varga A., Juhasz G. (2014) Different effects of Atg2 and Atg18 mutations on Atg8a and Atg9 trafficking during starvation in Drosophila. FEBS Lett. 588(3), 408–413. doi: 10.1016/j.febslet.2013.12.012
- Nagy P., Kárpáti M., Varga A., Pircs K., Venkei Z., Takáts S., Varga K., Erdi B., Hegedűs K, Juhász G. (2014) Atg17/FIP200 localizes to perilysosomal Ref(2)P aggregates and promotes autophagy by activation of Atg1 in Drosophila. Autophagy. 10(3), 453–467. doi: 10.4161/auto.27442
- Hennig P., Fenini G., Di Filippo M., Karakaya T., Beer H.D. (2021) The pathways underlying the multiple roles of p62 in inflammation and cancer. Biomedicines. 9(7), 707. doi: 10.3390/biomedicines9070707
- Panwar V., Singh A., Bhatt M., Tonk R.K., Azizov S., Raza A.S., Sengupta S., Kumar D., Garg M. (2023) Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct. Target. Ther. 8(1), 375. doi: 10.1038/s41392-023-01608-z
- Juhász G. (2012) Interpretation of bafilomycin, pH neutralizing or protease inhibitor treatments in autophagic flux experiments: novel considerations. Autophagy. 8(12), 1875–1876. doi: 10.4161/auto.21544
- Danieli A., Martens S. (2018) p62-mediated phase separation at the intersection of the ubiquitin-proteasome system autophagy. J. Cell Sci. 131(19), jcs214304. doi: 10.1242/jcs.214304
- Pai Y.L., Lin Y.J., Peng W.H., Huang L.T., Chou H.Y., Wang C.H., Chien C.T., Chen G.C. (2023) The deubiquitinase Leon/USP5 interacts with Atg1/ULK1 and antagonizes autophagy. Cell Death Dis. 14(8), 540. doi: 10.1038/s41419-023-06062-x
- Yan J., Seibenhener M.L. Calderilla-Barbosa L., Diaz-Meco M.T., Moscat J., Jiang J., Wooten M.W., Wooten M.C. (2013) SQSTM1/p62 interacts with HDAC6 and regulates deacetylase activity. PLoS One. 278(9), e76016. doi: 10.1371/journal.pone.0076016
- Nihira K., Miki Y., Ono K., Suzuki T., Sasano H. (2014) An inhibition of p62/SQSTM1 caused autophagic cell death of several human carcinoma cells. Cancer Sci. 105(5), 568–575. doi: 10.1111/cas.12396
- Pankiv S., Lamark T., Bruun J.A., Øvervatn A., Bjørkøy G., Johansen T. (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J. Biol. Chem. 285(8), 5941–5953. doi: 10.1074/jbc.M109.039925
- Banani S.F., Lee H.O., Hyman A.A., Rosen M.K. (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18(5), 285–298. doi: 10.1038/nrm.2017.7
- Shin Y., Brangwynne C.P. (2017) Liquid phase condensation in cell physiology and disease. Science. 357(6357), eaaf4382. doi: 10.1126/science.aaf4382
- Brangwynne C.P., Eckmann C.R., Courson D.S., Rybarska A., Hoege C., Gharakhani J., Jülicher F., Hyman A.A. (2009) Germline P granules ARE liquid droplets that localize by controlled dissolution/condensation. Science. 324, 1729–1732. doi: 10.1126/science.1172046
- Li P., Banjade S., Cheng H.C., Kim S., Chen B., Guo L., Llaguno M., Hollingsworth J.V., King D.S., Banani S.F., Russo P.S., Jiang Q.X., Nixon B.T., Rosen M.K. (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature. 483(7389), 336–340. doi: 10.1038/nature10879
- Park S., Han S., Choi I., Kim B., Park S.P., Joe E.H., Suh Y.H. (2016) Interplay between leucine-rich repeat kinase 2 (LRRK2) and p62/SQSTM-1 in selective autophagy. PLoS One. 11(9), e0163029. doi: 10.1371/journal.pone.0163029
- Kurusu R., Morishita H., Komatsu M. (2024) p62 bodies: cytosolic zoning by phase separation. J. Biochem. 175(2), 141–146. doi: 10.1093/jb/mvad089
- Jiang T., Harder B., Rojo de la Vega M., Wong P.K., Chapman E., Zhang D.D. (2015) p62 links autophagy and Nrf2 signaling. Free Radic. Biol. Med. 88(Pt. B), 199–204. doi: 10.1016/j.freeradbiomed.2015.06.014
- Rhee S.G., Bae S.H. (2015) The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic. Biol. Med. 88(Pt. B), 205–211. doi: 10.1016/j.freeradbiomed.2015.06.007
- Ro S.H., Fay J., Cyuzuzo C.I., Jang Y., Lee N., Song H.S. Harris E.N. (2020) SESTRINs: emerging dynamic stress-sensors in metabolic and environmental health. Front. Cell Dev. Biol. 8, 603421. doi: 10.3389/fcell.2020.603421
- Bae S.H., Sung S.H., Oh S. Y., Lim J.M., Lee S.K., Park Y.N., Lee H.E., Kang D., Rhee S.G. (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 prevent oxidative liver damage. Cell Metab. 17(1), 73–84. doi: 10.1016/j.cmet.2012.12.002
- Kovaleva I.E., Tokarchuk A.V., Zheltukhin A.O., Dalina A.A., Safronov G.G., Evstafieva A.G., Lyamzaev K.G., Chumakov P.M., Budanov A.V. (2020) Mitochondrial localization of Sesn2. PLoS One. 15(4), e0226862. doi: 10.1371/journal.pone.0226862
- Gong L., Wang Z., Wang Z., Zhang Z. (2021) Sestrin2 as a potential target for regulating metabolic-related diseases. Front. Endocrinol. (Lausanne). 12, 751020. doi: 10.3389/fendo.2021.751020
- Fatima M.T., Hasan M., Abdelsalam S.S., Sivaraman S.K., El-Gamal H., Zahid M.A., Elrayess M.A., Korashy H.M., Zeidan A., Parray A.S., Agouni A. (2021) Sestrin2 suppression aggravates oxidative stress and apoptosis in endothelial cells subjected to pharmacologically induced endoplasmic reticulum stress. Eur. J. Pharmacol. 907, 174247. doi: 10.1016/j.ejphar.2021.174247
- Joo M.S., Kim W.D., Lee K.Y., Kim J.H., Koo J.H., Kim S.G. (2016) AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol. Cell. Biol. 36, 1931–1942. doi: 10.1128/MCB.00118-16
- Mo C., Wang L., Zhang J., Numazawa S., Tang H., Tang X., Han X., Li J., Yang M., Wang Z., Wei D., Xiao H. (2014) The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal. 20, 574–588. doi: 10.1089/ars.2012.5116
- Herzig S., Shaw R.J. (2018) AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135. doi: 10.1038/nrm.2017.95
- Morgunova G.V., Klebanov A.A. (2019) Age-related AMP-activated protein kinase alterations: from cellular energetics to longevity. Cell Biochem. Funct. 37(3), 169–176. doi: 10.1002/cbf.3384
- Shackelford D.B., Shaw R.J. (2009) The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat. Rev. Cancer. 9, 563–575, doi: 10.1038/nrc2676
- Li X., Tang X., Su J., Xu G., Zhao L., Qi Q. (2019) Involvement of E-cadherin/AMPK/mTOR axis in LKB1-induced sensitivity of non-small cell lung cancer to gambogic acid. Biochem. Pharmacol. 169, 113635. doi: 10.1016/j.bcp.2019.113635.72
- O´Neill E.J., Sze N.S.K., MacPherson R.E.K., Tsiani E. (2024) Carnosic acid against lung cancer: induction of autophagy and activation of Sestrin-2/LKB1/AMPK signalling. Int. J. Mol. Sci. 25(4), 1950. doi: 10.3390/ijms25041950
- Kim M.J., Bae S.H., Ryu J.C., Kwon Y., Oh J.H., Kwon J., Moon J.S., Kim K., Miyawaki A., Lee M.G., Shin J., Kim Y.S., Kim C.H., Ryter S.W., Choi A.M., Rhee S.G., Ryu J.H., Yoon J.H. (2016) SESN2/Sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy. 12(8), 1272–1291. doi: 10.1080/15548627.2016.1183081
- Tomasovic A., Kurrle N., Surun D., Heidler J., Husnjak K., Poser I., Schnutgen F., Scheibe S., Seimetz M., Jaksch P., Hyman A., Weissmann N., von Melchner H. (2015) Sestrin 2 protein regulates plateletderived growth factor receptor β (Pdgfrβ) expression by modulating proteasomal and Nrf2 transcription factor functions. J. Biol. Chem. 290(15), 9738–9752. doi: 10.1074/jbc.M114.632133
- Eid A.A., Lee D.Y., Roman L.J., Khazim K., Gorin Y. (2013) Sestrin 2 and AMPK connect hyperglycemia to Nox4-dependent endothelial nitric oxide synthase uncoupling and matrix protein expression. Mol. Cell. Biol. 33(17), 3439–3460. doi: 10.1128/MCB.00217-13
- Ichimura Y., Waguri S., Sou Y.-S., Kageyama S., Hasegawa J., Ishimura R., Saito T., Yang Y., Kouno T., Fukutomi T., Hoshii T., Hirao A., Takagi K., Mizushima T., Motohashi H., Lee M-S., Yoshimori T., Tanaka K., Yamamoto M., Komatsu M. (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell. 51(5), 618–631. doi: 10.1016/j.molcel.2013.08.003
- Hashimoto K., Simmons A.N., Kajino-Sakamoto R., Tsuji Y., Ninomiya-Tsuji J. (2016) TAK1 regulates the Nrf2 antioxidant system through modulating p62/SQSTM1. Antioxid. Redox Signal. 25, 953–964. doi: 10.1089/ars.2016.6663
- Ran D., Ma Y., Liu W., Luo T., Zheng J., Wang D., Song R., Zhao H., Zou H., Gu J., Yuan Y., Bian J., Liu Z. (2020) TGF-β-activated kinase 1 (TAK1) mediates cadmium-induced autophagy in osteoblasts via the AMPK/mTORC1/ULK1 pathway. Toxicology. 442, 152538. doi: 10.1016/j.tox.2020.152538
- Duleh S., Wang X., Komirenko A., Margeta M. (2016) Activation of the Keap1/Nrf2 stress response pathway in autophagic vacuolar myopathies. Acta Neuropathol. Commun. 4(1), 115. doi: 10.1186/s40478-016-0384-6
- Yang Y., Willis T.L., Button R.W., Strang C.J., Fu Y., Wen X., Grayson P.R.C., Evans T., Sipthorpe R.J., Roberts S.L., Hu B., Zhang J., Lu B., Luo S. (2019) Cytoplasmic DAXX drives SQSTM1/p62 phase condensation to activate Nrf2-mediated stress response. Nat. Commun. 10(1), 3759. doi: 10.1038/s41467-019-11671-2.19
- Goode A., Rea S., Sultana M., Shaw B., Searle M.S., Layfield R. (2016) ALS-FTLD associated mutations of SQSTM1 impact on Keap1-Nrf2 signalling. Mol. Cell. Neurosci. 76, 52–58. 10.1016/j.mcn.2016.08.004
- Rolland T., Taşan M., Charloteaux B., Pevzner S.J., Zhong Q., Sahni N., Yi S., Lemmens I., Fontanillo C., Mosca R., Kamburov A., Ghiassian S.D., Yang X., Ghamsari L., Balcha D., Begg B.E., Braun P., Brehme M., Broly M.P., Carvunis A.-R., Convery-Zupan D., Corominas R., Coulombe-Huntington J., Dann E., Dreze M., Dricot A., Fan C., Franzosa E., Gebreab F., Gutierrez B.J., Hardy M.F., Jin M., Kang S., Kiros R., Lin G.N., Luck K., MacWilliams A., Menche J., Murray R.R., Palagi A., Poulin M.M., Rambout X., Rasla J., Reichert P., Romero V., Ruyssinck E., Sahalie J.M., Scholz A., Shah A.A., Sharma A., Shen Y., Spirohn K., Tam S., Tejeda A.O., Trigg S.A., Twizere J.-C., Vega K., Walsh J., Cusick M.E., Xia Y., Barabási A. L., Iakoucheva L.M., Aloy P., De Las Rivas J., Tavernier J., Calderwood M.A., Hill D.E., Hao T., Roth F.P., Vidal M. (2014) A proteome-scale map of the human interactome network. Cell. 159, 1212–1226. doi: 10.1016/j.cell.2014.10.050
- Seth D., Hess D.T., Hausladen A., Wang L., Wang Y.-J., Stamler J.S. (2018) A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol. Cell. 69, 451–464.e6. doi: 10.1016/j.molcel.2017.12.025
- Bonnet L.V., Palandri A., Flores-Martin J.B., Hallak M.E. (2024) Arginyltransferase 1 modulates p62-driven autophagy via mTORC1/AMPK signaling. Cell Commun. Signal. 22(1), 87. doi: 10.1186/s12964-024-01499-9
- Ji C.H., Kwon Y.T. (2017) Crosstalk and interplay between the ubiquitin-proteasome system and autophagy. Mol. Cells. 40(7), 441–449. doi: 10.14348/molcells.2017.0115
- Lee S.J., Kim H.Y., Lee M.J., Kim S.B., Kwon Y.T., Ji C.H. (2023) Characterization and chemical modulation of p62/SQSTM1/Sequestosome-1 as an autophagic N-recognin. Methods Enzymol. 686, 235–265. doi: 10.1016/bs.mie.2023.02.005
- Zhang Y., Mun S.R., Linares J.F., Ahn J., Towers C.G., Ji C.H., Fitzwalter B.E., Holden M.R., Mi W., Shi X., Moscat J., Thorburn A., Diaz-Meco M.T., Kwon Y.T., Kutateladze T.G. (2018) ZZ-dependent regulation of p62/SQSTM1 in autophagy. Nat. Commun. 9(1), 4373. doi: 10.1038/s41467-018-06878-8
- Cha-Molstad H., Yu J.E., Feng Z., Lee S.H., Kim J.G., Yang P., Han B., Sung K.W., Yoo Y.D., Hwang J., McGuire T., Shim S.M., Song H.D., Ganipisetti S., Wang N., Jang J.M., Lee M.J., Kim S.J., Lee K.H., Hong J.T., Ciechanover A., Mook-Jung I., Kim K.P., Xie X.Q., Kwon Y.T., Kim B.Y. (2017) p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat. Commun. 8(1), 102. doi: 10.1038/s41467-017-00085-7
- Demishtein A., Fraiberg M., Berko D., Tirosh B., Elazar Z., Navon A. (2017) SQSTM1/p62-mediated autophagy compensates for loss of proteasome polyubiquitin recruiting capacity. Autophagy. 13(10), 1697–1708. doi: 10.1080/15548627.2017.1356549
- Jung E.J., Sung K.W., Bae T.H., Kim H.Y., Choi H.R., Kim S.H., Jung C.H., Mun S.R., Son Y.S., Kim S., Suh Y.H., Kashina A., Park J.W., Kwon Y.T. (2023) The N-degron pathway mediates lipophagy: the chemical modulation of lipophagy in obesity and NAFLD. Metabolism. 146, 155644. doi: 10.1016/j.metabol.2023.155644
- Yoon M.J., Choi B., Kim E.J., Ohk J., Yang C., Choi Y.G., Lee J., Kang C., Song H.K., Kim Y.K., Woo J.S., Cho Y., Choi E.J., Jung H., Kim C. (2021) UXT chaperone prevents proteotoxicity acting as an autophagy adaptor for p62-dependent aggrephagy. Nat. Commun. 12(1), 1955. doi: 10.1038/s41467-021-22252-7
- Pan M., Yin Y., Hu T, Wang X., Jia T., Sun J., Wang Q., Meng W., Zhu J., Dai C., Hu H., Wang C. (2023) UXT attenuates the CGAS-STING1 signaling by targeting STING1 for autophagic degradation. Autophagy. 19(2), 440–456. doi: 10.1080/15548627.2022.2076192
- Han P., Mo S., Wang Z., Xu J., Fu X., Tian Y. (2023) UXT at the crossroads of cell death, immunity and neurodegenerative diseases. Front. Oncol. 13, 1179947. doi: 10.3389/fonc.2023.1179947
- Sun S., Tang Y., Lou X., Zhu L., Yang K., Zhang B., Shi H., Wang C. (2007) UXT is a novel and essential cofactor in the NF-κB transcriptional enhanceosome. J. Cell Biol. 178(2), 231–244. doi: 10.1083/jcb.200611081
- Sarkar S., Rubinsztein D.C. (2008) Small molecule enhancers of autophagy for neurodegenerative diseases. Mol. BioSyst. 4(9), 895–901. doi: 10.1039/b804606a
- Mizunoe Y., Kobayashi M., Sudo Y., Watanabe S., Yasukawa H., Natori D., Hoshino A., Negishi A., Okita N., Komatsu M., Higami Y. (2018) Trehalose protects against oxidative stress by regulating the Keap1-Nrf2 and autophagy pathways. Redox Biol. 15, 115–124. doi: 10.1016/j.redox.2017.09.007
- Galati S., Boni C., Gerra M.C., Lazzaretti M., Buschini A. (2019) Autophagy: a player in response to oxidative stress and DNA damage. Oxid. Med. Cell. Longev. 2019, 5692958. doi: 10.1155/2019/5692958
- Beese C.J., Brynjólfsdóttir S.H., Frankel L.B. (2020) Selective autophagy of the protein homeostasis machinery: ribophagy, proteaphagy and ER-phagy. Front. Cell Dev. Biol. 7, 373. doi: 10.3389/fcell.2019.00373
- Kim J., Lee S., Kim H., Lee H., Seong K.M., Youn H., Youn B. (2021) Autophagic organelles in DNA damage response. Front. Cell Dev. Biol. 9, 668735. doi: 10.3389/fcell.2021.668735
- Jadiya P., Tomar D. (2020) Mitochondrial protein quality control mechanisms. Genes (Basel). 11(5), 563. doi: 10.3390/genes11050563
- Rödl S., Herrmann J.M. (2023) The role of the proteasome in mitochondrial protein quality control. IUBMB Life. 75(10), 868–879. doi: 10.1002/iub.2734
- Gureev A.P., Shaforostova E.A., Popov V.N. (2019) Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front. Genet. 10, 435. doi: 10.3389/fgene.2019.00435
- Gureev A.P., Sadovnikova I.S., Starkov N.N., Starkov A.A., Popov V.N. (2020) p62-Nrf2-p62 mitophagy regulatory loop as a target for preventive therapy of neurodegenerative diseases. Brain Sci. 10(11), 847. doi: 10.3390/brainsci10110847
- Шиловский Г.А., Ашапкин В.В. (2022) Транскрипционный фактор Nrf2 и митохондрии – друзья или противники в редокс-регуляции темпов старения. Биохимия. 87(12), 1856–1867. doi: 10.31857/S0320972522120065
- Redza-Dutordoir M., Averill-Bates D.A. (2021) Interactions between reactive oxygen species and autophagy: Special issue: Death mechanisms in cellular homeostasis. Biochim. Biophys. Acta Mol. Cell. Res. 1868(8), 119041. doi: 10.1016/j.bbamcr.2021.119041
- Lu C., Jiang Y., Xu W., Bao X. (2023) Sestrin2: multifaceted functions, molecular basis, and its implications in liver diseases. Cell Death Dis. 14(2), 160. doi: 10.1038/s41419-023-05669-4
- Далина А.А., Ковалева И.Е., Буданов А.В. (2018) Cестрины – шлагбаумы на путях от стресса к старению и болезням. Молекуляр. биология. 52(6), 948–962. doi: 10.1134/S0026898418060046
- Haidurov A., Budanov A.V. (2020) Sestrin family – the stem controlling healthy ageing. Mech. Ageing Dev. 192, 111379. doi: 10.1016/j.mad.2020.111379
- Ma S., Attarwala I.Y., Xie X.Q. (2019) SQSTM1/p62: a potential target for neurodegenerative disease. ACS Chem. Neurosci. 10, 2094–2114. doi: 10.1021/acschemneuro.8b00516
- Ramesh Babu J., Lamar Seibenhener M., Peng J., Strom A.L., Kemppainen R., Cox N., Zhu H., Wooten M.C., Diaz-Meco M.T., Moscat J., Wooten M.W. (2008) Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration. J. Neurochem. 106(1), 107–120. doi: 10.1111/j.1471-4159.2008.05340.x
- Zheng X., Wang W., Liu R., Huang H., Zhang R., Sun L. (2012) Effect of p62 on tau hyperphosphorylation in a rat model of Alzheimer´s disease. Neural Regen. Res. 7, 1304–1311. doi: 10.3969/j.issn.1673-5374.2012.17.004
- Caccamo A., Ferreira E., Branca C., Oddo S. (2017) p62 improves AD-like pathology by increasing autophagy. Mol. Psychiatry. 22, 865–873. doi: 10.1038/mp.2016.139
- Katsuragi Y., Ichimura Y., Komatsu M. (2016) Regulation of the Keap1–Nrf2 pathway by p62/SQSTM1. Curr. Opin. Toxicol. 1, 54–61. doi: 10.1016/j.cotox.2016.09.005
- Saito T., Ichimura Y., Taguchi K., Suzuki T., Mizushima T., Takagi K., Hirose Y., Nagahashi M., Iso T., Fukutomi T., Iso T., Fukutomi T., Ohishi M., Endo K., Uemura T., Nishito Y., Okuda S., Obata M., Kouno T., Imamura R., Tada Y., Obata R., Yasuda D., Takahashi K., Fujimura T., Pi J., Lee M.S., Ueno T., Ohe T., Mashino T., Wakai T., Kojima H., Okabe T., Nagano T., Motohashi H., Waguri S., Soga T., Yamamoto M., Tanaka K., Komatsu M. (2016) p62/Sqstm1 promotes malignancy of HCV-positive hepatocellular carcinoma through Nrf2-dependent metabolic reprogramming. Nat. Commun. 7, 12030. doi: 10.1038/ncomms12030
- Menegon S., Columbano A., Giordano S. (2016) The dual roles of Nrf2 in cancer. Trends Mol. Med. 22, 578–593. doi: 10.1016/j.molmed.2016.05.002
- Ahmed S.M., Luo L., Namani A., Wang X.J., Tang X. (2017) Nrf2 signaling pathway: pivotal roles in inflammation. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 585–597. doi: 10.1016/j.bbadis.2016.11.005
- Hennig P., Di Filippo M., Bilfeld G., Mellett M., Beer H.D. (2022) High p62 expression suppresses the NLRP1 inflammasome and increases stress resistance in cutaneous SCC cells. Cell Death Dis. 13(12), 1077. doi: 10.1038/s41419-022-05530-0
- Jeong S.J., Zhang X., Rodriguez-Velez A., Evans T.D., Razani B. (2019) p62/SQSTM1 and selective autophagy in cardiometabolic diseases. Antioxid. Redox Signal. 31(6), 458–471. doi: 10.1089/ars.2018.7649
- Davidson J.M., Chung R.S., Lee A. (2022) The converging roles of sequestosome-1/p62 in the molecular pathways of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Neurobiol. Dis. 166, 105653. doi: 10.1016/j.nbd.2022.105653
- Jiang B., Zhou X., Yang T., Wang L., Feng L., Wang Z., Xu J., Jing W., Wang T., Su H., Yang G., Zhang Z. (2023) The role of autophagy in cardiovascular disease: cross-interference of signaling pathways and underlying therapeutic targets. Front. Cardiovasc. Med. 10, 1088575. doi: 10.3389/fcvm.2023.1088575
- Tan C.T., Soh N.J.H., Chang H.C., Yu V.C. (2023) p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J. 290(4), 892–912. doi: 10.1111/febs.16317
- Yang H., Ni H.M., Ding W.X. (2019) Emerging players in autophagy deficiency-induced liver injury and tumorigenesis. Gene Exp. 19(3), 229–234. doi: 10.3727/105221619X15486875608177
- Yu M., Zhang H., Wang B., Zhang Y., Zheng X., Shao B., Zhuge Q., Jin K. (2021) Key signaling pathways in aging and potential interventions for healthy aging. Cells. 10(3), 660. doi: 10.3390/cells10030660
- Si J., Liu B., Qi K., Chen X., Li D., Yang S., Ji E. (2023) Tanshinone IIA inhibited intermittent hypoxia induced neuronal injury through promoting autophagy via AMPK-mTOR signaling pathway. J. Ethnopharmacol. 315, 116677. doi: 10.1016/j.jep.2023.116677
Supplementary files
