VLPs Carring HIV-1 Env with Modulated Glycan Composition

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Previously obtained highly immunogenic Env-VLPs ensure overcoming the natural resistance of HIV-1 surface proteins associated with their low level of incorporation and inaccessibility of conserved epitopes to induce neutralizing antibodies. We also adopted this technology to modify Env trimers of ZM53(T/F) strain to produce Env-VLPs by recombinant vaccinia viruses (rVVs). These rVVs expressing Env, Gag-Pol (HIV-1/SIV), as well as the cowpox virus hr gene allowing to avoid the restriction of vaccinia virus replication in CHO cells were used for VLP production. The CHO Lec1 engineered cell line lacking GlcNAc-TI was used for generating VLPs with Env proteins containing a cytoplasmic domain (CT) affecting on surface subunit (SU) conformation. This has created the opportunity to modulate the glycan composition, and refine the conditions for their production, and optimize approaches to overcoming HIV-1 resistance associated with abundant glycosylation.

Full Text

Restricted Access

About the authors

G. A. Kaevitser

Gamaleya Federal Research Center of Epidemiology and Microbiology

Author for correspondence.
Email: anvzorov@mail.ru
Russian Federation, Moscow, 123098

E. I. Samokhvalov

Gamaleya Federal Research Center of Epidemiology and Microbiology

Email: anvzorov@mail.ru
Russian Federation, Moscow, 123098

D. V. Scheblyakov

Gamaleya Federal Research Center of Epidemiology and Microbiology

Email: anvzorov@mail.ru
Russian Federation, Moscow, 123098

A. L. Gintsburg

Gamaleya Federal Research Center of Epidemiology and Microbiology; Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation

Email: anvzorov@mail.ru
Russian Federation, Moscow, 123098; Moscow, 123098

A. N. Vzorov

Gamaleya Federal Research Center of Epidemiology and Microbiology; Department of Immunology, Faculty of Biology, Lomonosov Moscow State University

Email: anvzorov@mail.ru
Russian Federation, Moscow, 123098; Moscow, 119234

References

  1. Melikyan G.B., Markosyan R.M., Hemmati H., Delmedico M.K., Lambert D.M., Cohen F.S. (2000) Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J. Cell Biol. 151, 413–423.
  2. Rutten L., Lai Y.T., Blokland S., Truan D., Bisschop I.J.M., Strokappe N.M., Koornneef A., van Manen D., Chuang G.Y., Farney S.K., Schuitemaker H., Kwong P.D., Langedijk J.P.M. (2018) A universal approach to optimize the folding and stability of prefusion-closed HIV-1 envelope trimers. Cell Rep. 23, 584–595.
  3. Vzorov A.N., Wang L., Wang B.Z., Compans R.W. (2016) Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology. 489, 141–150.
  4. Vzorov A.N., Compans R.W. (1996) Assembly and release of SIV env proteins with full-length or truncated cytoplasmic domains. Virology. 221, 22–33.
  5. Vzorov A.N., Lea-Fox D., Compans R.W. (1999) Immunogenicity of full length and truncated SIV envelope proteins. Viral Immunol. 12, 205–215.
  6. Vzorov A.N., Compans R.W. (2000) Effect of the cytoplasmic domain of the simian immunodeficiency virus envelope protein on incorporation of heterologous envelope proteins and sensitivity to neutralization. J. Virol. 74, 8219–8225.
  7. Vzorov A.N., Compans R.W. (2011) Effects of stabilization of the gp41 cytoplasmic domain on fusion activity and infectivity of SIVmac239. AIDS Res. Hum. Retroviruses. 27, 1213–1222.
  8. Haynes B.F., Wiehe K., Borrow P., Saunders K.O., Korber B., Wagh K., McMichael A.J., Kelsoe G., Hahn B.H., Alt F., Shaw G.M. (2023) Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat. Rev. Immunol. 23, 142–158.
  9. Back N.K., Smit L., De Jong J.J., Keulen W., Schutten M., Goudsmit J., Tersmette M. (1994) An N-glycan within the human immunodeficiency virus type 1 gp120 V3 loop affects virus neutralization. Virology. 199, 431–438.
  10. Cole K.S., Steckbeck J.D., Rowles J.L., Desrosiers R.C., Montelaro R.C. (2004) Removal of N-linked glycosylation sites in the V1 region of simian immunodeficiency virus gp120 results in redirection of B-cell responses to V3. J. Virology. 78, 1525–1539.
  11. Koch M., Pancera M., Kwong P.D., Kolchinsky P., Grundner C., Wang L., Hendrickson W.A., Sodroski J., Wyatt R. (2003) Structure-based, targeted deglycosylation of HIV-1 gp120 and effects on neutralization sensitivity and antibody recognition. Virology. 313, 387–400.
  12. McCaffrey R.A., Saunders C., Hensel M., Stamatatos L. (2004) N-linked glycosylation of the V3 loop and the immunologically silent face of gp120 protects human immunodeficiency virus type 1 SF162 from neutralization by anti-gp120 and anti-gp41 antibodies. J. Virology. 78, 3279–3295.
  13. Reitter J.N., Means R.E., Desrosiers R.C. (1998) A role for carbohydrates in immune evasion in AIDS. Nat. Med. 4, 679–684.
  14. Julien J.P., Lee P.S., Wilson I.A. (2012) Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Immunol. Rev. 250, 180–198.
  15. Sok D., Doores K.J., Briney B., Le K.M., Saye-Francisco K.L., Ramos A., Kulp D.W., Julien J.P., Menis S., Wickramasinghe L., Seaman M.S., Schief W.R., Wilson I.A., Poignard P., Burton D.R. (2014) Promiscuous glycan site recognition by antibodies to the high-mannose patch of gp120 broadens neutralization of HIV. Sci. Transl. Med. 6, 236ra63.
  16. Lanteri M., Giordanengo V., Hiraoka N., Fuzibet J.G., Auberger P., Fukuda M., Baum L.G., Lefebvre J.C. (2003) Altered T cell surface glycosylation in HIV-1 infection results in increased susceptibility to galectin-1-induced cell death. Glycobiology. 13, 909–918.
  17. Binley J.M., Ban Y.E., Crooks E.T., Eggink D., Osawa K., Schief W.R., Sanders R.W. (2010) Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization. J. Virol. 84, 5637–5655.
  18. Wagh K., Hahn B.H., Korber B. (2020) Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies. Curr. Opin. HIV AIDS. 15, 267–274.
  19. Lechner F., Jegerlehner A., Tissot A.C., Maurer P., Sebbel P., Renner W.A., Jennings G.T., Bachmann M.F. (2002) Virus-like particles as a modular system for novel vaccines. Intervirology. 45, 212–217.
  20. Blasco R., Moss B. (1995) Selection of recombinant vaccinia viruses on the basis of plaque formation. Gene. 158, 157–162.
  21. Moore P.L., Crooks E.T., Porter L., Zhu P., Cayanan C.S., Grise H., Corcoran P., Zwick M.B., Franti M., Morris L., Roux K.H., Burton D.R., Binley J.M. (2006) Nature of nonfunctional envelope proteins on the surface of human immunodeficiency virus type 1. J. Virol. 80, 2515–2528.
  22. Ramsey-Ewing A., Moss B. (1996) Recombinant protein synthesis in Chinese hamster ovary cells using a vaccinia virus/bacteriophage T7 hybrid expression system. J. Biol. Chemistry. 271, 16962–16966.
  23. Checkley M.A., Luttge B.G., Freed E.O. (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J. Mol. Biol. 410, 582–608.
  24. Vzorov A.N., Yang C., Compans R.W. (2015) An amphipathic sequence in the cytoplasmic tail of HIV-1 Env alters cell tropism and modulates viral receptor specificity. Acta Virol. 59, 209–220.
  25. Tedbury P.R., Novikova M., Ablan S.D., Freed E.O. (2016) Biochemical evidence of a role for matrix trimerization in HIV-1 envelope glycoprotein incorporation. Proc. Natl. Acad. Sci. USA. 113(2), E182–E190.
  26. doi: 10.1073/pnas.1516618113
  27. Nguyen N.T.B., Lin J., Tay S.J., Mariati, Yeo M., Nguyen-Khuong T., Yang Y. (2021) Multiplexed engineering glycosyltransferase genes in CHO cells via targeted integration for producing antibodies with diverse complex-type N-glycans. Sci. Rep. 11, 12969.
  28. Derdeyn C.A., Decker J.M., Bibollet-Ruche F., Mokili J.L., Muldoon M., Denham S.A., Heil M.L., Kasolo F., Musonda R., Hahn B.H., Shaw G.M., Korber B.T., Allen S., Hunter E. (2004) Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science. 303, 2019–2022.
  29. Patnaik S.K., Stanley P. (2006) Lectin-resistant CHO glycosylation mutants. Methods Enzymol. 416, 159–182.
  30. Zhu X., Borchers C., Bienstock R.J., Tomer K.B. (2000) Mass spectrometric characterization of the glycosylation pattern of HIV-gp120 expressed in CHO cells. Biochemistry. 39, 11194–11204.
  31. Raska M., Takahashi K., Czernekova L., Zachova K., Hall S., Moldoveanu Z., Elliott M.C., Wilson L., Brown R., Jancova D., Barnes S., Vrbkova J., Tomana M., Smith P.D., Mestecky J., Renfrow M.B., Novak J. (2010) Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J. Biol. Chem. 285, 20860–20869.
  32. Srinivas R.V., Compans R.W. (1983) Glycosylation and intracellular transport of spleen focus-forming virus glycoproteins. Virology. 125, 274–286.
  33. Cao L., Pauthner M., Andrabi R., Rantalainen K., Berndsen Z., Diedrich J.K., Menis S., Sok D., Bastidas R., Park S.R., Delahunty C.M., He L., Guenaga J., WyattR.T., Schief W.R., Ward A.B., Yates J.R. 3rd., Burton D.R., Paulson J.C. (2018) Differential processing of HIV envelope glycans on the virus and soluble recombinant trimer. Nat. Commun. 9, 3693.
  34. Kwong P.D., Wyatt R., Robinson J., Sweet R.W., Sodroski J., Hendrickson W.A. (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature. 393, 648–659.
  35. Rizzuto C.D., Wyatt R., Hernández-Ramos N., Sun Y., Kwong P.D., Hendrickson W.A., Sodroski J. (1998) A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science. 280, 1949–1953.
  36. Kolchinsky P., Kiprilov E., Sodroski J. (2001) Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. J. Virol. 75, 2041–2050.
  37. Puffer B.A., Pöhlmann S., Edinger A.L, Carlin D., Sanchez M.D., Reitter J., Watry D.D., Fox H.S., Desrosiers R.C., Doms R.W. (2002) CD4 independence of simian immunodeficiency virus Envs is associated with macrophage tropism, neutralization sensitivity, and attenuated pathogenicity. J. Virol. 76, 2595–2605.
  38. Edwards T.G., Hoffman T.L., Baribaud F., Wyss S., LaBranche C.C., Romano J., Adkinson J., Sharron M., Hoxie J.A., Doms R.W. (2001) Relationships between CD4 independence, neutralization sensitivity, and exposure of a CD4-induced epitope in a human immunodeficiency virus type 1 envelope protein. J. Virol. 75, 5230–5239.
  39. Johnson W.E., Morgan J., Reitter J., Puffer B.A., Czajak S., Doms R.W., Desrosiers R.C. (2002) A replication-competent, neutralization-sensitive variant of simian immunodeficiency virus lacking 100 amino acids of envelope. J. Virol. 76, 2075–2086.
  40. Center R.J., Earl P.L., Lebowitz J., Schuck P., Moss B. (2000) The human immunodeficiency virus type 1 gp120 V2 domain mediates gp41-independent intersubunit contacts. J. Virol. 74, 4448–4455.
  41. Vzorov A.N., Compans R.W. (2016) Cytoplasmic domain effects on exposure of co-receptor-binding sites of HIV-1 Env. Arch. Virol. 161, 3011–3018.
  42. Liao H.X., Tsao C.Y., Alam S.M., Muldoon M., Vandergrift N., Ma B.J., Lu X., Sutherland L.L., Scearce R.M., Bowman C., Parks R., Chen H., Blinn J.H., Lapedes A., Watson S., Xia S.M., Foulger A., Hahn B.H., Shaw G.M., Swanstrom R., Montefiori D.C., Gao F., Haynes B.F., Korber B. (2013) Antigenicity and immunogenicity of transmitted/founder, consensus, and chronic envelope glycoproteins of human immunodeficiency virus type 1. J. Virol. 87, 4185–4201.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of vaccinia virus hr gene expression on HIV-1 Env and Gag protein synthesis in CHO and Hep2 cells. Hep2 (lanes 1, 3, 5) or CHO (lanes 2, 4, 6) cells were coinfected with VVEnvIIIB (lanes 1–6), VVGag-Pol (lanes 1, 2), VVCP (lanes 1–4), or VVSC11 (control virus lacking VKO and HIV-1 hr genes) (lanes 5, 6). Numbers on the right indicate the locations of protein molecular mass standards (kDa).

Download (104KB)
3. Fig. 2. Translation of the HIV-1 Env protein is accompanied by glycosylation of the synthesized polypeptide chain and oligomerization into trimers in the endoplasmic reticulum (ER) of the cell. Oligomerization promotes the movement of trimers to the Golgi apparatus (G), where the polypeptide chain is cut into SU and a transmembrane subunit and further maturation of the carbohydrate chain occurs. In the Env trimer, in the presence of an α-helix in the CT domain, some substrates may be inaccessible to enzymes. (1) Env precursor; (2) oligomannose chains (beige) attached at an asparagine residue in the site of potential N-glycosylation (Asn-X-Thr/Ser, where X ≠ Pro) on the Env monomer (gp160); (3) oligomerization and movement of Env trimers; (4) proteolytic cleavage of gp160 by cellular furin to form gp120 and gp41; (5) processing of carbohydrate chains and formation of complex glycans (green). For a description of the composition of the Env-22 and Env-22hb proteins, see Table 1.

Download (105KB)
4. Fig. 3. Trimer formation by HIV-1 Env protein expressed by VVEnv-22. Hep2 cells were infected with the virus at different multiplicities of infection (MOI): 0.1 (lane 1), 0.2 (lane 2), 0.5 (lanes 3, 5) PFU/cell. Negative control – uninfected Hep2 cells (lane 4). After 48 h, the cells were removed and the plasma membrane fraction containing HIV-1 proteins was purified. Samples were dissolved in sample loading buffer without reducing agents at room temperature (lanes 1‒3) or with reducing agents (200 mM dithiothreitol, 200 mM β-mercaptoethanol, 8 M urea) for 5 min at 96°C (lane 5). Proteins were separated in 4–15% SDS-PAAG and analyzed by immunoblotting.

Download (56KB)
5. Fig. 4. Kinetics of HIV-1 VLP production. a – Analysis of VLP production by immunoblotting. CHO cells were coinfected with three viruses: VVCP : VVEnv-22 : VVGag-Pol in a ratio of 1 : 1 : 1 – with an MOI of 0.5 PFU/cell; the culture medium containing VLPs was collected at 0 (lane 6), 48 (1), 60 (2), 72 (3), 84 (4) and 96 (5) h after the start of infection. b – Densitometric analysis was performed using ImageJ software. Data are presented based on two independent experiments.

Download (96KB)
6. Fig. 5. Immunoblot analysis of the molecular weight of HIV-1 Env proteins on the surface of CHO cells coinfected with the rVV mixture. The content of VVCP + VVEnv-22 + VVGag-Pol viruses in the inoculum was 0.5 : 0.5 : 0.5 (lane 2), 1 : 1 : 1 (lane 3), 0.5 : 1.5 : 0.5 (lane 4), 1 : 1.5 : 0.5 (lane 5) PFU/cell. Negative control – CHO cells coinfected with VVCP and VVGag-Pol in a ratio of 1 : 1 PFU/cell (lane 1). Proteins were separated in 8% SDS-PAAG and analyzed by immunoblotting as described in the Experimental section.

Download (67KB)
7. Fig. 6. Immunoblotting of HIV-1 Env proteins expressed by CHO (1–3) and CHO Lec1 (4–6) cells infected with VVEnvIIIB. The plasma membrane fraction was treated with Endo H (lanes 1, 4), PNGase F (lanes 2, 5), or left untreated (lanes 3, 6). Proteins were separated on 8% SDS-PAAG and analyzed by immunoblotting as described in the Experimental Section.

Download (85KB)
8. Fig. 7. BN-PAGE analysis of VLPs treated with glycosidases or proteases. VLPs obtained in Lec1 cells infected with the same multiplicity of VVGag-Pol and VVEnv-22 (a), with an excess of VVEnv-22 or VVEnv-22hb relative to VVGag-Pol (b). Env-22 VLPs (a, 1–3; b, 1–3); Env-22hb VLPs (b, 4–6). Untreated VLPs (a, 1; b, 3 and 6), Endo H-treated VLPs (a, 2; b, 2 and 5), and a mixture of chymotrypsin, trypsin, subtilisin/proteinase K enzymes (a, 3; b, 1 and 4).

Download (98KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».