The drosophila zinc finger Protein CG9609 interacts with the Deubiquitinating (DUB) module of the SAGA complex and participates in the regulation of Transcription

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In previous studies, we found that the zinc finger proteins Su(Hw) and CG9890 interact with the Drosophila SAGA complex and participate in the formation of active chromatin structure and transcriptional regulation. In this research, we discovered the interaction of the DUB module of the SAGA complex with another zinc finger protein, CG9609. ChIP-Seq analysis was performed and CG9609 binding sites in the Drosophila genome were identified. Analysis of binding sites showed that they are localized predominantly at gene promoters. The CG9609 protein has been shown to be involved in the regulation of gene expression.

Full Text

Restricted Access

About the authors

J. V. Nikolenko

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: krasnov@genebiology.ru
Russian Federation, Moscow, 119991

M. M. Kurshakova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: krasnov@genebiology.ru
Moscow, 119991

D. V. Kopytova

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: krasnov@genebiology.ru
Russian Federation, Moscow, 119991

Y. A. Vdovina

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences

Email: krasnov@genebiology.ru
Russian Federation, Moscow, 119991

N. E. Vorobyova

Institute of Gene Biology, Russian Academy of Sciences

Email: krasnov@genebiology.ru
Russian Federation, Moscow, 119334

A. N. Krasnov

Institute of Gene Biology, Russian Academy of Sciences

Author for correspondence.
Email: krasnov@genebiology.ru
Russian Federation, Moscow, 119334

References

  1. Orphanides G., Reinberg D. (2002) A unified theory of gene expression. Cell. 108, 439–451.
  2. Maksimenko O., Georgiev P. (2014) Mechanisms and proteins involved in long-distance interactions. Front. Genet. 5, 28.
  3. van Bemmel J.G., Pagie L., Braunschweig U., Brugman W., Meuleman W., Kerkhoven R.M., van Steensel B. (2010) The insulator protein SU(HW) fine-tunes nuclear lamina interactions of the Drosophila genome. PLoS One. 5, e15013.
  4. Rando O.J., Chang H.Y. (2009) Genome-wide views of chromatin structure. Annu. Rev. Biochem. 78, 245–271.
  5. Tchurikov N.A., Krasnov A.N., Ponomarenko N.A., Golova Y.B., Chernov B.K. (1998) Forum domain in Drosophila melanogaster cut locus possesses looped domains inside. Nucl. Acids Res. 26, 3221–3227.
  6. Vorobyeva N.E., Mazina M.U., Golovnin A.K., Kopytova D.V., Gurskiy D.Y., Nabirochkina E.N., Georgieva S.G., Georgiev P.G., Krasnov A.N. (2013) Insulator protein Su(Hw) recruits SAGA and Brahma complexes and constitutes part of Origin Recognition Complex-binding sites in the Drosophila genome. Nucl. Acids Res. 41, 5717–5730.
  7. Мазина М.Ю., Воробьева Н.Е., Краснов А.Н. (2013) Способность Su(Hw) создавать платформу для формирования ориджинов репликации не зависит от типа окружающего хроматина. Цитология. 55(4), 218–224.
  8. Vorobyeva N.E., Nikolenko J.V., Krasnov A.N., Kuzmina J.L., Panov V.V., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. (2011) SAYP interacts with DHR3 nuclear receptor and participates in ecdysone-dependent transcription regulation. Cell Cycle. 10, 1821–1827.
  9. Kopytova D.V., Krasnov A.N., Orlova A.V., Gurskiy D.Y., Nabirochkina E.N., Georgieva S.G., Shidlovskii Y.V. (2010) ENY2: couple, triple…more? Cell Cycle. 9, 479–481.
  10. Kurshakova M., Maksimenko O., Golovnin A., Pulina M., Georgieva S., Georgiev P., Krasnov A. (2007) Evolutionarily conserved E(y)2/Sus1 protein is essential for the barrier activity of Su(Hw)-dependent insulators in Drosophila. Mol. Cell. 27, 332–338.
  11. Krasnov A.N., Kurshakova M.M., Ramensky V.E., Mardanov P.V., Nabirochkina E.N., Georgieva S.G. (2005) A retrocopy of a gene can functionally displace the source gene in evolution. Nucl. Acids Res. 33, 6654–6661.
  12. Zhao Y., Lang G., Ito S., Bonnet J., Metzger E., Sawatsubashi S., Suzuki E., Le Guezennec X., Stunnenberg H.G., Krasnov A., Georgieva S.G., Schule R., Takeyama K., Kato S., Tora L., Devys D. (2008) A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol. Cell. 29, 92–101.
  13. Helmlinger D., Tora L. (2017) Sharing the SAGA. Trends Biochem. Sci. 42, 850–861.
  14. Samara N.L., Datta A.B., Berndsen C.E., Zhang X., Yao T., Cohen R.E., Wolberger C. (2010) Structural insights into the assembly and function of the SAGA deubiquitinating module. Science. 328, 1025–1029.
  15. Kohler A., Zimmerman E., Schneider M., Hurt E., Zheng N. (2010) Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Cell. 141, 606–617.
  16. Мазина М.Ю., Николенко Ю.В., Краснов А.Н., Воробьева Н.Е. (2016) Транскрипция гена HSP70 дрозофилы на этапах инициации и элонгации происходит с участием белковых комплексов SWI/SNF. Генетика. 52, 164–169.
  17. Krasnov A.N., Mazina M.Y., Nikolenko J.V., Vorobyeva N.E. (2016) On the way of revealing coactivator complexes cross-talk during transcriptional activation. Cell. Biosci. 6, 15.
  18. Фурсова Н.А., Николенко Ю.В., Сошникова Н.В., Мазина М.Ю., Воробьева Н.Е., Краснов А.Н. (2018) Белок CG9890 с доменами цинковых пальцев – новый компонент ENY2-содержащих комплексов дрозофилы. Acta Naturae. 10, 110–114.
  19. Фурсова Н.А., Мазина М.Ю., Николенко Ю.В., Воробьева Н.Е., Краснов А.Н. (2020) Белок CG9890 дрозофилы, содержащий домены цинковых пальцев, колокализуется с комплексами модификации и ремоделирования хроматина на промоторах генов и участвует в регуляции транскрипции. Acta Naturae. 12, 114–119.
  20. НиколенкоЮ.В., Фурсова Н.А., Мазина М.Ю., Воробьева Н.Е., Краснов А.Н. (2022) Белок CG9890 дрозофилы участвует в регуляции экдизонзависимой транскрипции. Молекуляр. биология. 56(4), 557–563.
  21. Clemens J.C., Worby C.A., Simonson-Leff N., Muda M., Maehama T., Hemmings B.A., Dixon J.E. (2000) Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. USA. 97, 6499–6503.
  22. Николенко Ю.В., Вдовина Ю.А., Фефелова Е.И., Глухова А.А., Набирочкина Е.Н., Копытова Д.В. (2021) Деубиквитинирующий (DUB) модуль SAGA участвует в Pol III-зависимой транскрипции. Молекуляр. биология. 55(3), 500–509.
  23. Enuameh M.S., Asriyan Y., Richards A., Christensen R.G., Hall V.L., Kazemian M., Zhu C., Pham H., Cheng Q., Blatti C., Brasefield J.A., Basciotta M.D., Ou J., McNulty J.C., Zhu L.J., Celniker S.E., Sinha S., Stormo G.D., Brodsky M.H., Wolfe S.A. (2013) Global analysis of Drosophila Cys(2)-His(2) zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res. 23, 928–940.
  24. Laity J.H., Dyson H.J., Wright P.E. (2000) DNA-induced alpha-helix capping in conserved linker sequences is a determinant of binding affinity in Cys(2)-His(2) zinc fingers. J. Mol. Biol. 295, 719–727.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Appendix Table
Download (296KB)
3. Fig. 1. Coimmunoprecipitation of 3xFLAG_CG9609 protein with ENY2 and Sgf11 proteins. The antibodies used in immunoprecipitation are indicated. Input is the initial extract, IgG is immunoprecipitation with nonspecific antibodies. Western blot was stained with antibodies to the 3xFLAG epitope. The 3xFLAG_CG9609 protein is marked with an arrow. It is seen that antibodies to ENY2 and Sgf11 precipitate 3xFLAG_CG9609. In the IgG sample, the wide band corresponds to the heavy chain of the antibodies; the 3xFLAG_CG9609 protein is absent.

Download (49KB)
4. Fig. 2. ChIP-Seq profile of CG9609 protein in the bnl gene region. The upper panel shows the gene structure from the genome browser. The lower panel shows the ChIP-Seq profile itself in CPM units. It is evident that CG9609 protein is localized on the bnl gene promoter.

Download (267KB)
5. Fig. 3. Consensus sequence of the potential binding site of the CG9609 protein.

Download (60KB)
6. Fig. 4. Transcription of some genes containing CG9609 on promoters during RNA interference of CG9609. Gene names are given at the bottom. Light columns correspond to gene transcription under normal conditions (taken as one). Dark columns correspond to gene transcription during RNA interference of CG9609. The ordinate axis shows the ratio of transcription in the experiment and in the control. The level of CG9609 gene transcription during RNA interference was 9 times lower than under normal conditions. The ras64B gene was used as a normalization gene. The experiments were performed in triplicate. Error bars indicate the standard error of the mean. Statistically significant changes are indicated by an asterisk (p < 0.05, Student's t-test).

Download (90KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».