How to shift the equilibrium of dna break repair in favor of homology recombination
- Authors: Averina O.A.1,2,3, Kuznetsova S.A.1, Permyakov O.A.1,3, Sergiev P.V.1,2,3
-
Affiliations:
- Institute of Functional Genomics, Lomonosov Moscow State University
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University
- Department of Chemistry, Lomonosov Moscow State University
- Issue: Vol 58, No 4 (2024)
- Pages: 525–548
- Section: ОБЗОРЫ
- URL: https://journals.rcsi.science/0026-8984/article/view/274955
- DOI: https://doi.org/10.31857/S0026898424040029
- EDN: https://elibrary.ru/INFKTE
- ID: 274955
Cite item
Abstract
With the practical implementation of the CRISPR/Cas technology for targeted genome editing, it has become possible to carry out genetic engineering manipulations with eukaryotic genomes with high efficiency. One of the key stages of this technology is the targeted induction of site-specific DNA cleavages (breaks). The cell repairs these breaks via one of two pathways: nonhomologous end joining or homologous recombination. The choice of DNA repair pathway is determined by the architecture of the sites at the DNA break area formed as a result of terminal resection and depends on the phases of the cell cycle. Nonhomologous end joining is the main pathway for repair of double-stranded DNA breaks in mammalian cells. It involves a nonspecific ligation reaction, the accuracy of which depends on the structure of the ends of the break, and can result in various insertions or deletions in the target region of the genome. Integration of the desired sequence into the genome occurs along the path of homologous recombination, the implementation of which requires a matrix with homology regions on both sides of the double-strand break. The introduction of a genetic construct into a given location in the genome is an important, but currently complex and labor-intensive task. At the same time, for fundamental studies of gene function and the creation of animal models of human diseases, the choice of the repair pathway can be of fundamental importance. This review is an attempt to combine and structure all known information on approaches to increasing the efficiency of DNA repair involving homologous recombination. The article lists the most effective strategies to shift the balance towards homologous repair, such as the use of inhibitors of the non-homologous end joining mechanism, regulation of key factors of homologous recombination, control of the cell cycle, chromatin status, construction of templates for homologous recombination.
Full Text

About the authors
O. A. Averina
Institute of Functional Genomics, Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Department of Chemistry, Lomonosov Moscow State University
Email: svetlana@belozersky.msu.ru
Russian Federation, Moscow, 119991; Moscow, 119991; Moscow, 119991
S. A. Kuznetsova
Institute of Functional Genomics, Lomonosov Moscow State University
Author for correspondence.
Email: svetlana@belozersky.msu.ru
Russian Federation, Moscow, 119991
O. A. Permyakov
Institute of Functional Genomics, Lomonosov Moscow State University; Department of Chemistry, Lomonosov Moscow State University
Email: svetlana@belozersky.msu.ru
Russian Federation, Moscow, 119991; Moscow, 119991
P. V. Sergiev
Institute of Functional Genomics, Lomonosov Moscow State University; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University; Department of Chemistry, Lomonosov Moscow State University
Email: svetlana@belozersky.msu.ru
Russian Federation, Moscow, 119991; Moscow, 119991; Moscow, 119991
References
- Makarova K.S., Wolf Y.I., Iranzo J., Shmakov S.A., Alkhnbashi O.S., Brouns S.J.J., Charpentier E., Cheng D., Haft D.H., Horvath P., Moineau S., Mojica F.J.M., Scott D., Shah S.A., Siksnys V., Terns M.P., Venclovas Č., White M.F., Yakunin A.F., Yan W., Koonin E.V. (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83. doi: 10.1038/s41579-019-0299-x
- Liu Z., Dong H., Cui Y., Cong L., Zhang D. (2020) Application of different types of CRISPR/Cas-based systems in bacteria. Microb. Cell Fact. 19, 1–14. doi: 10.1186/s12934-020-01431-z
- Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816–821. doi: 10.1126/science.1225829
- Filippova J., Matveeva A., Zhuravlev E., Stepanov G. (2019) Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems. Biochimie. 167, 49–60. doi: 10.1016/j.biochi.2019.09.003
- Hendel A., Bak R.O., Clark J.T., Kennedy A.B., Ryan D.E., Roy S., Steinfeld I., Lunstad B.D., Kaiser R.J., Wilkens A.B., Bacchetta R., Tsalenko A., Dellinger D., Bruhn L., Porteus M.H. (2015) Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989. doi: 10.1038/nbt.3290
- Yin H., Song C.Q., Suresh S., Wu Q., Walsh S., Rhym L.H., Mintzer E., Bolukbasi M.F., Zhu L.J., Kauffman K., Mou H., Oberholzer A., Ding J., Kwan S.Y., Bogorad R.L., Zatsepin T., Koteliansky V., Wolfe S.A., Xue W., Langer R., Anderson D.G. (2017) Structure-guided chemical modification of guide RNA enables potent non-viral in vivo genome editing. Nat. Biotechnol. 35, 1179–1187. doi: 10.1038/nbt.4005
- Fu Y., Sander J.D., Reyon D., Cascio V.M., Joung J.K. (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284. doi: 10.1038/nbt.2808
- Liu G., Zhang Y., Zhang T. (2020) Computational approaches for effective CRISPR guide RNA design and evaluation. Comput. Struct. Biotechnol. J. 18, 35–44. doi: 10.1016/j.csbj.2019.11.006
- Gurumurthy C.B., Lloyd K.C.K. (2019) Generating mouse models for biomedical research: technological advances. Dis. Model. Mechan. 12, dmm029462. doi: 10.1242/dmm.029462
- Li F., Cowley D.O., Banner D., Holle E., Zhang L., Su L. (2014) Efficient genetic manipulation of the NOD-Rag1-/-IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology. Sci. Rep. 4, 5290. doi: 10.1038/srep05290
- Wang H., Yang H., Shivalila C.S., Dawlaty M.M., Cheng A.W., Zhang F., Jaenisch R. (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153, 910–918. doi: 10.1016/j.cell.2013.04.025
- Sunagawa G.A., Sumiyama K., Ukai-Tadenuma M., Perrin D., Fujishima H., Ukai H., Nishimura O., Shi S., Ohno R.I., Narumi R., Shimizu Y., Tone D., Ode K.L., Kuraku S., Ueda H.R. (2016) Mammalian reverse genetics without crossing reveals Nr3a as a short-sleeper gene. Cell Rep. 14, 662–677. doi: 10.1016/j.celrep.2015.12.052
- Arai D., Nakao Y. (2021) Efficient biallelic knock-in in mouse embryonic stem cells by in vivo-linearization of donor and transient inhibition of DNA polymerase θ/DNA-PK. Sci Rep. 11, 18132. doi: 10.1038/s41598-021-97579-8
- Li X., Sun B., Qian H., Ma J., Paolino M., Zhang Z. (2022) A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system. J. Zhejiang Univ. Sci. B. 23, 141–152. doi: 10.1631/jzus.B2100196
- Shalem O., Sanjana N.E., Hartenian E., Shi X., Scott D.A., Mikkelson T., Heckl D., Ebert B.L., Root D.E., Doench J.G., Zhang F. (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 343, 84–87. doi: 10.1126/science.1247005
- Wang T., Wei J.J., Sabatini D.M., Lander E.S. (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science. 343, 80–84. doi: 10.1126/science.1246981
- Zhou Y., Zhu S., Cai C., Yuan P., Li C., Huang Y., Wei W. (2014) High-tHDRoughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature. 509, 487–491. doi: 10.1038/nature13166
- Lino C.A., Harper J.C., Carney J.P., Timlin J.A. (2018) Delivering crispr: a review of the challenges and approaches. Drug Deliv. 25, 1234–1257. doi: 10.1080/10717544.2018.1474964.
- Slaymaker I.M., Gao L., Zetsche B., Scott D.A., Yan W.X., Zhang F. (2016) Rationally engineered Cas9 nucleases with improved specificity. Science. 351, 84–88. doi: 10.1126/science.aad5227
- Doench J.G., Fusi N., Sullender M., Hegde M., Vaimberg E.W., Donovan K.F., Smith I., Tothova Z., Wilen C., Orchard R., Virgin H.W., Listgarten J., Root D.E. (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191. doi: 10.1038/nbt.3437
- Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., Cradick T.J., Marraffini L.A., Bao G., Zhang F. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832. doi: 10.1038/nbt.2647
- Cong L., Ran F.A., Cox D., Lin S., Barretto R., Habib N., Hsu P.D., Wu X., Jiang W., Marraffini L.A., Zhang F. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science. 339, 819–823. doi: 10.1126/science.1231143
- Turchiano G., Andrieux G., Klermund J., Blattner G., Pennucci V., El Gaz M., Monaco G., Poddar S., Mussolino C., Cornu T.I., Boerries M., Cathomen T. (2021) Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. Cell Stem Cell. 28, 1136–1147.e5. doi: 10.1016/j.stem.2021.02.002
- Parikh B.A., Beckman D.L., Patel S.J., White J.M., Yokoyama W.M. (2015) Detailed phenotypic and molecular analyses of genetically modified mice generated by CRISPR-Cas9-mediated editing. PLoS One. 10, e0116484. doi: 10.1371/journal.pone.0116484
- Traxler E.A., Yao Y., Wang Y.D., Woodard K.J., Kurita R., Nakamura Y., Hughes J.R., Hardison R.C., Blobel G.A., Li C., Weiss M.J. (2016) A genome-editing strategy to treat β-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat. Med. 22, 987–990. doi: 10.1038/nm.4170
- Cullot G., Boutin J., Toutain J., Prat F., Pennamen P., Rooryck C., Teichmann M., Rousseau E., Lamrissi-Garcia I., Guyonnet-Duperat V., Bibeyran A., Lalanne M., Prouzet-Mauléon V., Turcq B., Ged C., Blouin J.M., Richard E., Dabernat S., Moreau-Gaudry F., Bedel A. (2019) CRISPR-Cas9 genome editing induces megabase-scale cHDRomosomal truncations. Nat. Commun. 10, 1136. doi: 10.1038/s41467-019-09006-2
- Kosicki M., Tomberg K., Bradley A. (2018) Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36, 765–771. doi: 10.1038/nbt.4192
- Xu C.L., Ruan M.Z.C., Mahajan V.B., Tsang S.H. (2019) Viral delivery systems for CRISPR. Viruses. 11, 28. doi: 10.3390/v11010028
- Charlesworth C.T., Deshpande P.S., Dever D.P., Camarena J., Lemgart V.T., Cromer M.K., Vakulskas C.A., Collingwood M.A., Zhang L., Bode N.M., Behlke M.A., Dejene B., Cieniewicz B., Romano R., Lesch B.J., Gomez-Ospina N., Mantri S., Pavel-Dinu M., Weinberg K.I., Porteus M.H. (2019) Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25, 249–254. doi: 10.1038/s41591-018-0326-x
- Song M., Koo T. (2021) Recent advances in CRISPR technologies for genome editing. Arch. Pharm. Res. 44, 537–552. doi: 10.1007/s12272-021-01336-4
- Walton R.T., Christie K.A., Whittaker M.N., Kleinstiver B.P. (2020) Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science. 368, 290–296. doi: 10.1126/science.aba8853
- Wang Y., Wang B., Xie H., Ren Q., Liu X., Li F., Lv X., He X., Cheng C., Deng R., Li J., Zhao J., Song Z., Gu F. (2019) Efficient human genome editing using SaCas9 ribonucleoprotein complexes. Biotechnol. J. 14, e1800689. doi: 10.1002/biot.201800689
- Görücü Yilmaz S. (2021) Genome editing technologies: CRISPR, LEAPER, RESTORE, ARCUT, SATI, and RESCUE. EXCLI J. 20, 19–45. doi: 10.17179/excli2020-3070
- Kleinstiver B.P., Sousa A.A., Walton R.T., Tak Y.E., Hsu J.Y., Clement K., Welch M.M., Horng J.E., Malagon-Lopez J., Scarfò I., Maus M.V., Pinello L., Aryee M.J., Joung J.K. (2019) Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282. doi: 10.1038/s41587-018-0011-0
- Li S., Zhang X., Wang W., Guo X., Wu Z., Du W., Zhao Y., Xia L. (2018) Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice. Mol. Plant. 11, 995–998. doi: 10.1016/j.molp.2018.03.009
- Gasiunas G., Barrangou R., Horvath P., Siksnys V. (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA. 109, 2579–2586. doi: 10.1073/pnas.1208507109
- Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Arkin A.P., Lim W.A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 152, 1173–1183. doi: 10.1016/j.cell.2013.02.022
- Gilbert L.A., Larson M.H., Morsut L., Liu Z., Brar G.A., Torres S.E., Stern-Ginossar N., Brandman O., Whitehead E.H., Doudna J.A., Lim W.A., Weissman J.S., Qi L.S. (2013) XCRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154, 442–451. doi: 10.1016/j.cell.2013.06.044
- Maeder M.L., Linder S.J., Cascio V.M., Fu Y., Ho Q.H., Joung J.K. (2013) CRISPR RNA-guided activation of endogenous human genes. Nat. Methods. 10, 977–979. doi: 10.1038/nmeth.2598
- Balboa D., Weltner J., Eurola S., Trokovic R., Wartiovaara K., Otonkoski T. (2015) Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep. 5, 448–459. doi: 10.1016/j.stemcr.2015.08.001
- Gilbert L.A., Horlbeck M.A., Adamson B., Villalta J.E., Chen Y., Whitehead E.H., Guimaraes C., Panning B., Ploegh H.L., Bassik M.C., Qi L.S., Kampmann M., Weissman J.S. (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 159, 647–661. doi: 10.1016/j.cell.2014.09.029
- Wang G., Chow R.D., Bai Z., Zhu L., Errami Y., Dai X., Dong M.B., Ye L., Zhang X., Renauer P.A., Park J.J., Shen L., Ye H., Fuchs C.S., Chen S. (2019) Multiplexed activation of endogenous genes by CRISPR a elicits potent antitumor immunity. Nat. Immunol. 20, 1494–1505. doi: 10.1038/s41590-019-0500-4
- Liu P., Chen M., Liu Y., Qi L.S., Ding S. (2018) CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell. 22, 252‒261.e4. doi: 10.1016/j.stem.2017.12.001
- Nuñez J.K., Chen J., Pommier G.C., Cogan J.Z., Replogle J.M., Adriaens C., Ramadoss G.N., Shi Q., Hung K.L., Samelson A.J., Pogson A.N., Kim J.Y.S., Chung A., Leonetti M.D., Chang H.Y., Kampmann M., Bernstein B.E., Hovestadt V., Gilbert L.A., Weissman J.S. (2021) Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 184, 2503–2519.e17. doi: 10.1016/j.cell.2021.03.025
- Zhang F., Song G., Tian Y. (2019) Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems. Animal Model Exp. Med. 2, 69–75. doi: 10.1002/ame2.12069
- Malone L.M., Birkholz N., Fineran P.C. (2021) Conquering CRISPR: how phages overcome bacterial adaptive immunity. Curr. Opin. Biotechnol. 68, 30–36. doi: 10.1016/j.copbio.2020.09.008
- Harrington L.B., Doxzen K.W., Ma E., Liu J.J., Knott G.J., Edraki A., Garcia B., Amrani N., Chen J.S., Cofsky J.C., Kranzusch P.J., Sontheimer E.J., Davidson A.R., Maxwell K.L., Doudna J.A. (2017) A broad-spectrum inhibitor of CRISPR-Cas9. Cell. 170, 1224–1233.e15. doi: 10.1016/j.cell.2017.07.037
- Liu L., Yin M., Wang M., Wang Y. (2019) Phage AcrIIA2 DNA mimicry: structural basis of the CRISPR and anti-CRISPR arms race. Mol. Cell. 73, 611–620.e3. doi: 10.1016/j.molcel.2018.11.011
- Jo D.H., Koo T., Cho C.S., Kim J.H., Kim J.S., Kim J.H. (2019) Long-term effects of in vivo genome editing in the mouse retina using Campylobacter jejuni Cas9 expressed via adeno-associated virus. Mol. Therapy. 27, 130–136. doi: 10.1016/j.ymthe.2018.10.009
- Harrington L.B., Burstein D., Chen J.S., Paez-Espino D., Ma E., Witte I.P., Cofsky J.C., Kyrpides N.C., Banfield J.F., Doudna J.A. (2018) Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 362, 839–842. doi: 10.1126/science.aav4294
- Gupta R., Ghosh A., Chakravarti R., Singh R., Ravichandiran V., Swarnakar S., Ghosh D. (2022) Cas13d: a new molecular scissor for transcriptome engineering. Front. Cell Dev. Biol. 10, 866800. doi: 10.3389/fcell.2022.866800
- Koo T., Park S.W., Jo D.H., Kim D., Kim J.H., Cho H.Y., Kim J., Kim J.H., Kim J.S. (2018) CRISPR-LbCpf1 prevents choroidal neovascularization in a mouse model of age-related macular degeneration. Nat. Commun. 9, 1855. doi: 10.1038/s41467-018-04175-y
- Chen J.S., Ma E., Harrington L.B., Da Costa M., Tian X., Palefsky J.M., Doudna J.A. (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 360, 436–439. doi: 10.1126/science.aar6245
- Leung R.K., Cheng Q.X., Wu Z.L., Khan G., Liu Y., Xia H.Y., Wang J. (2022) CRISPR-Cas12-based nucleic acids detection systems. Methods. 203, 276–281. doi: 10.1016/j.ymeth.2021.02.018
- Wang Z., Wang Y., Wang S., Gorzalski A.J., McSwiggin H., Yu T., Castaneda-Garcia K., Prince B., Wang H., Zheng H., Yan W. (2020) Efficient genome editing by CRISPR-Mb3Cas12a in mice. J. Cell Sci. 133, jcs240705. doi: 10.1242/jcs.240705
- Altae-Tran H., Kannan S., Demircioglu F.E., Oshiro R., Nety S.P., McKay L.J., Dlakić M., Inskeep W.P., Makarova K.S., Macrae R.K., Koonin E.V., Zhang F. (2021) The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science. 374, 57–65. doi: 10.1126/science.abj6856
- Cox D.B.T., Gootenberg J.S., Abudayyeh O.O., Franklin B., Kellner M.J., Joung J., Zhang F. (2017) RNA editing with CRISPR-Cas13. Science. 358, 1019–1027. doi: 10.1126/science.aaq0180
- Abudayyeh O.O., Gootenberg J.S., Franklin B., Koob J., Kellner M.J., Ladha A., Joung J., Kirchgatterer P., Cox D.B.T., Zhang F. (2019) A cytosine deaminase for programmable single-base RNA editing. Science. 365, 382–386. doi: 10.1126/science.aax7063
- Hoeijmakers J.H.J. (2009) DNA damage, aging, and cancer. NEJM. 361, 1475–1485. https://doi.org/10.1056/NEJMra0804615
- Lieber M.R. (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181–211. doi: 10.1146/annurev.biochem.052308.093131
- Sirbu B.M., Cortez D. (2013) DNA damage response: tHDRee levels of DNA repair regulation. Cold Spring Harb. Perspect. Biol. 5, a012724. doi: 10.1101/cshperspect.a012724
- Baudat F., Imai Y., De Massy B. (2013) Meiotic recombination in mammals: localization and regulation. Nat. Rev. Genet. 14, 794–806. doi: 10.1038/nrg3573
- Schatz D.G., Ji Y. (2011) Recombination centres and the orchestration of V(D)J recombination. Nat. Rev. Immunol. 11, 251–263. doi: 10.1038/nri2941
- van de Kooij B., van Attikum H. (2021) Genomic reporter constructs to monitor pathway-specific repair of DNA double-strand breaks. Front Genet. 12, 809832. doi: 10.3389/fgene.2021.809832
- Cannan W.J., Pederson D.S. (2016) Mechanisms and consequences of double-strand DNA break formation in chromatin. J. Cell Physiol. 231, 3–14. doi: 10.1002/jcp.25048
- Zhang X., Li T., Ou J., Huang J., Liang P. (2022) Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein Cell. 13, 316–335. doi: 10.1007/s13238-021-00838-7
- Denes C.E., Cole A.J., Aksoy Y.A., Li G., Neely G.G., Hesselson D. (2021) Approaches to enhance precise CRISPR/Cas9‐mediated genome editing. Int. J. Mol. Sci. 22, 8571. doi: 10.3390/ijms22168571
- Yang H., Ren S., Yu S., Pan H., Li T., Ge S., Zhang J., Xia N. (2020) Methods favoring homology-directed repair choice in response to CRISPR/Cas9 induced-double strand breaks. Int. J. Mol. Sci. 21, 6461. doi: 10.3390/ijms21186461
- Sun W., Liu H., Yin W., Qiao J., Zhao X., Liu Y. (2022) Strategies for enhancing the homology-directed repair efficiency of CRISPR-Cas systems. CRISPR J. 5, 7–18. doi: 10.1089/crispr.2021.0039
- Ma J., Zhou Y., Pan P., Yu H., Wang Z., Li L.L., Wang B., Yan Y., Pan Y., Ye Q., Liu T., Feng X., Xu S., Wang K., Wang X., Jian Y., Ma B., Fan Y., Gao Y., Huang H., Li L. (2023) TRABID overexpression enables synthetic lethality to PARP inhibitor via prolonging 53BP1 retention at double-strand breaks. Nat. Commun. 14, 1810. doi: 10.1038/s41467-023-37499-5
- Li G., Liu D., Zhang X., Quan R., Zhong C., Mo J., Huang Y., Wang H., Ruan X., Xu Z., Zheng E., Gu T., Hong L., Li Z., Wu Z., Yang H. (2018) Suppressing Ku70/Ku80 expression elevates homology-directed repair efficiency in primary fibroblasts. Int. J. Biochem. Cell Biol. 99, 154–160. doi: 10.1016/j.biocel.2018.04.011
- Pawelczak K.S., Gavande N.S., VanderVere-Carozza P.S., Turchi J.J. (2018) Modulating DNA repair pathways to improve precision genome engineering. ACS Chem. Biol. 13, 389–396. doi: 10.1021/acschembio.7b00777
- Gavande N.S., VanderVere-Carozza P.S., Pawelczak K.S., Mendoza-Munoz P., Vernon T.L., Hanakahi L.A., Summerlin M., Dynlacht J.R., Farmer A.H., Sears C.R., Nasrallah N.A., Garrett J., Turchi J.J. (2020) Discovery and development of novel DNA-PK inhibitors by targeting the unique Ku-DNA interaction. Nucl. Acids Res. 48, 11536–11550. doi: 10.1093/nar/gkaa934
- Chu V.T., Weber T., Wefers B., Wurst W., Sander S., Rajewsky K., Kühn R. (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548. doi: 10.1038/nbt.3198
- Li G., Quan R., Wang H., Ruan X., Mo J., Zhong C., Yang H., Li Z., Gu T., Liu D., Wu Z., Cai G., Zhang X. (2019) Inhibition of KU70 and KU80 by CRISPR interference, not NgAgo interference, increases the efficiency of homologous recombination in pig fetal fibroblasts. J. Integr. Agric. 18, 438–448. 10.1016/S2095-3119(18)62150-1
- Shy B.R., MacDougall M.S., Clarke R., Merrill B.J. (2016) Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells. Nucl. Acids Res. 44, 7997–8010. doi: 10.1093/nar/gkw685
- Yu W., Li L., Wang G., Zhang W., Xu J., Liang A. (2018) KU70 inhibition impairs both non-homologous end joining and homologous recombination DNA damage repair tHDRough SHP-1 induced dephosphorylation of SIRT1 in adult T-cell leukemia-lymphoma cells. Cell. Physiol. Biochem. 49, 2111–2123. doi: 10.1159/000493815
- Weterings E., Gallegos A.C., Dominick L.N., Cooke L.S., Bartels T.N., Vagner J., Matsunaga T.O., Mahadevan D. (2016) A novel small molecule inhibitor of the DNA repair protein Ku70/80. DNA Repair. 43, 98–106. doi: 10.1016/j.dnarep.2016.03.014
- Riesenberg S., Maricic T. (2018) Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells. Nat. Commun. 9, 2164. doi: 10.1038/s41467-018-04609-7
- Mohiuddin I.S., Kang M.H. (2019) DNA-PK as an emerging therapeutic target in cancer. Front Oncol. 9, 635. doi: 10.3389/fonc.2019.00635
- Robert F., Barbeau M., Éthier S., Dostie J., Pelletier J. (2015) Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome Med. 7, 93. doi: 10.1186/s13073-015-0215-6
- Aksoy Y.A., Nguyen D.T., Chow S., Chung R.S., Guillemin G.J., Cole N.J., Hesselson D. (2019) Chemical reprogramming enhances homology-directed genome editing in zebrafish embryos. Commun. Biol. 2, 198. doi: 10.1038/s42003-019-0444-0
- Riesenberg S., Chintalapati M., Macak D., Kanis P., Maricic T., Pääbo S. (2019) Simultaneous precise editing of multiple genes in human cells. Nucl. Acids Res. 47, e116. doi: 10.1093/nar/gkz669
- Fu Y.W., Dai X.Y., Wang W.T., Yang Z.X., Zhao J.J., Zhang J.P., Wen W., Zhang F., Oberg K.C., Zhang L., Cheng T., Zhang X.B. (2021) Dynamics and competition of CRISPR-Cas9 ribonucleoproteins and AAV donor-mediated NHEJ, MMEJ and HDR editing. Nucl. Acids Res. 49, 969–985. doi: 10.1093/nar/gkaa1251
- Ray U., Raghavan S.C. (2020) Modulation of DNA double-strand break repair as a strategy to improve precise genome editing. Oncogene. 39, 6393–6405. doi: 10.1038/s41388-020-01445-2
- Ray U., Vartak S.V., Raghavan S.C. (2020) NHEJ inhibitor SCR7 and its different forms: Promising CRISPR tools for genome engineering. Gene. 763, 144997. doi: 10.1016/j.gene.2020.144997
- Shao S., Ren C., Liu Z., Bai Y., Chen Z., Wei Z., Wang X., Zhang Z., Xu K. (2017) Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. Int. J. Biochem. Cell Biol. 92. 43–52. doi: 10.1016/j.biocel.2017.09.012
- Maruyama T., Dougan S.K., Truttmann M.C., Bilate A.M., Ingram J.R., Ploegh H.L. (2015) Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat. Biotechnol. 33, 538–542. doi: 10.1038/nbt.3190
- Aird E.J., Lovendahl K.N., St Martin A., Harris R.S., Gordon W.R. (2018) Increasing Cas9-mediated homology-directed repair efficiency tHDRough covalent tethering of DNA repair template. Commun. Biol. 1, 54. doi: 10.1038/s42003-018-0054-2
- Song J., Yang D., Xu J., Zhu T., Chen Y.E., Zhang J. (2016) RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat. Commun. 7, 10548. doi: 10.1038/ncomms10548
- Gutschner T., Haemmerle M., Genovese G., Draetta G.F., Chin L. (2016) Post-translational regulation of Cas9 during G1 enhances homology-directed repair. Cell Rep. 14, 1555–1566. doi: 10.1016/j.celrep.2016.01.019
- Xie Z., Pang D., Wang K., Li M., Guo N., Yuan H., Li J., Zou X., Jiao H., Ouyang H., Li Z., Tang X. (2017) Optimization of a CRISPR/Cas9-mediated knock-in strategy at the porcine Rosa26 locus in porcine foetal fibroblasts. Sci. Rep. 7, 3036. doi: 10.1038/s41598-017-02785-y
- Yang D., Scavuzzo M.A., Chmielowiec J., Sharp R., Bajic A., Borowiak M. (2016) Enrichment of G2/M cell cycle phase in human pluripotent stem cells enhances HDR-mediated gene repair with customizable endonucleases. Sci. Rep. 6, 21264. doi: 10.1038/srep21264
- Canny M.D., Moatti N., Wan L.C.K., Fradet-Turcotte A., Krasner D., Mateos-Gomez P.A., Zimmermann M., Orthwein A., Juang Y.C., Zhang W., Noordermeer S.M., Seclen E., Wilson M.D., Vorobyov A., Munro M., Ernst A., Ng T.F., Cho T., Cannon P.M., Sidhu S.S., Durocher D. (2018) Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency. Nat. Biotechnol. 36, 95–102. doi: 10.1038/nbt.4021
- Jayavaradhan R., Pillis D.M., Malik P.A. (2019) Versatile tool for the quantification of CRISPR/Cas9-induced genome editing events in human hematopoietic cell lines and hematopoietic stem/progenitor cells. J. Mol. Biol. 431, 102–110. doi: 10.1016/j.jmb.2018.05.005
- Wienert B., Nguyen D.N., Guenther A., Feng S.J., Locke M.N., Wyman S.K., Shin J., Kazane K.R., Gregory G.L., Carter M.A.M., Wright F., Conklin B.R., Marson A., Richardson C.D., Corn J.E. (2020) Timed inhibition of CDC7 increases CRISPR-Cas9 mediated templated repair. Nat. Commun. 11, 2109. doi: 10.1038/s41467-020-15845-1
- Ma X., Chen X., Jin Y., Ge W., Wang W., Kong L., Ji J., Guo X., Huang, J., Feng X.H., Fu J., Zhu S. (2018) Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells. Nat. Commun. 9, 1303. doi: 10.1038/s41467-018-03760-5
- Vartak S.V., Swarup H.A., Gopalakrishnan V., Gopinatha V.K., Ropars V., Nambiar M., John F., Kothanahally S.K.S., Kumari R., Kumari N., Ray U., Radha G., Dinesh D., Pandey M., Ananda H., Karki S.S., Srivastava M., Charbonnier J.B., Choudhary B., Mantelingu K., Raghavan S.C. (2018) Autocyclized and oxidized forms of SCR7 induce cancer cell death by inhibiting nonhomologous DNA end joining in a ligase IV dependent manner. FEBS J. 285, 3959–3976. doi: 10.1111/febs.14661
- Killian T., Dickopf S., Haas A.K., Kirstenpfad C., Mayer K., Brinkmann U. (2017) Disruption of diphthamide synthesis genes and resulting toxin resistance as a robust technology for quantifying and optimizing CRISPR/Cas9-mediated gene editing. Sci. Rep. 7, 15480. doi: 10.1038/s41598-017-15206-x
- Aslan Y., Tadjuidje E., Zorn A.M., Cha S.W. (2017) High-efficiency non-mosaic CRISPR-mediated knock-in and InDel mutation in F0 Xenopus. Development. 144, 2852–2858. doi: 10.1242/dev.152967
- Ray U., Raul S.K., Gopinatha V.K., Ghosh D., Rangappa K.S., Mantelingu K., Raghavan S.C. (2020) Identification and characterization of novel SCR7-based small-molecule inhibitor of DNA end-joining, SCR130 and its relevance in cancer therapeutics. Mol. Carcinog. 59, 618–628. doi: 10.1002/mc.23186
- Scully R., Panday A., Elango R., Willis N.A. (2019) DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell. Biol. 20, 698–714. doi: 10.1038/s41580-019-0152-0
- Yeh C.D., Richardson C.D., Corn J.E. (2019) Advances in genome editing tHDRough control of DNA repair pathways. Nat. Cell Biol. 21, 1468–1478. doi: 10.1038/s41556-019-0425-z
- Richardson C.D., Kazane K.R., Feng S.J., Zelin E., Bray N.L., Schäfer A.J., Floor S.N., Corn J.E. (2018) CRISPR-Cas9 genome editing in human cells occurs via the Fanconi anemia pathway. Nat. Genet. 50, 1132–1139. doi: 10.1038/s41588-018-0174-0
- Syed A., Tainer J.A. (2018) The MRE11-RAD50-NBS1 complex conducts the orchestration of damage signaling and outcomes to stress in DNA replication and repair. Annu. Rev. Biochem. 87, 263–294. doi: 10.1146/annurev-biochem-062917-012415
- Reuven N., Adler J., Broennimann K., Myers N., Shaul Y. (2019) Recruitment of DNA repair MRN complex by intrinsically disordered protein domain fused to Cas9 improves efficiency of CRISPR-mediated genome editing. Biomolecules. 9, 584. doi: 10.3390/biom9100584
- Lee K.J., Saha J., Sun J., Fattah K.R., Wang S.C., Jakob B., Chi L., Wang S.Y., Taucher-Scholz G., Davis A.J., Chen D.J. (2015) Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase. Nucl. Acids Res. 44, 1732–1745. doi: 10.1093/nar/gkv1499
- Caron M.C., Sharma A.K., O’Sullivan J., Myler L.R., Ferreira M.T., Rodrigue A., Coulombe Y., Ethier C., Gagné J.P., Langelier M.F., Pascal J.M., Finkelstein I.J., Hendzel M.J., Poirier G.G., Masson J.Y. (2019) Poly-(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Nat. Commun. 10, 2954. doi: 10.1038/s41467-019-10741-9
- Huertas P., Jackason S.P. (2009) Human CtIP mediates cell cycle control of DNA end resection and double strand break repair. J. Biol. Chem. 284, 9558–9565. doi: 10.1074/jbc.M808906200
- Anand R., Ranjha L., Cannavo E., Cejka P. (2016) Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection. Mol. Cell. 64, 940–950. doi: 10.1016/j.molcel.2016.10.017
- Charpentier M., Khedher A.H.Y., Menoret S., Brion A., Lamribet K., Dardillac E., Boix C., Perrouault L., Tesson L., Geny S., De Cian A., Itier J.M., Anegon I., Lopez B., Giovannangeli C., Concordet J.P. (2018) CtIP fusion to Cas9 enhances transgene integration by homology-dependent repair. Nat. Commun. 9, 1–11. doi: 10.1038/s41467-018-03475-7
- Nimonkar A.V., Genschel J., Kinoshita E., Polaczek P., Campbell J.L., Wyman C., Modrich P., Kowalczykowski S.C. (2011) BLM-DNA2-RPA-MRN and EXO1-BLM-RPA-MRN constitute two DNA end resection machineries for human DNA break repair. Genes Dev. 25, 350–362. doi: 10.1101/gad.2003811
- Myler L.R., Gallardo I.F., Zhou Y., Gong F., Yang S.H., Wold M.S., Miller K.M., Paull T.T., Finkelstein I.J. (2016) Single-molecule imaging reveals the mechanism of Exo1 regulation by single-stranded DNA binding proteins. Proc. Natl. Acad. Sci. USA. 113, E1170–9. doi: 10.1073/pnas.1516674113
- Symington L.S. (2016) Mechanism and regulation of DNA end resection in eukaryotes. Crit. Rev. Biochem. Mol. Biol. 51, 195–212. doi: 10.3109/10409238.2016.1172552
- Daley J.M., Jimenez-Sainz J., Wang W., Miller A.S., Xue X., Nguyen K.A., Jensen R.B., Sung P. (2017) Enhancement of BLM-DNA2-mediated long-range DNA end resection by CtIP. Cell Rep. 21, 324–332. doi: 10.1016/j.celrep.2017.09.048
- Tarsounas M., Sung P. (2020) The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat. Rev. Mol. Cell Biol. 21, 284–299. doi: 10.1038/s41580-020-0218-z
- Becker J.R., Bonnet C., Clifford G., Groth A., Wilson M.D., Chapman J.R. (2020) BARD1 links histone H2A lysine-15 ubiquitination to initiation of BRCA1-dependent homologous recombination. bioRxiv. Cold Spring Harb. Lab. doi: https://doi.org/10.1101/2020.06.01.127951
- Nambiar T.S., Billon P., Diedenhofen G., Hayward S.B., Taglialatela A., Cai K., Huang J.W., Leuzzi G., Cuella-Martin R., Palacios A., Gupta A., Egli D., Ciccia A. (2019) Stimulation of CRISPR-mediated homology-directed repair by an engineered RAD18 variant. Nat. Commun. 10, 3395.
- doi: 10.1038/s41467-019-11105-z
- Xue C., Greene E.C. (2021) DNA repair pathway choices in CRISPR-Cas9-mediated genome editing. Trends Genet. 37, 639–656. doi: 10.1016/j.tig.2021.02.008
- Yu C., Liu Y., Ma T., Liu K., Xu S., Zhang Y., Liu H., La Russa M., Xie M., Ding S., Qi L.S. (2015) Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. 16, 142–147.
- doi: 10.1016/j.stem.2015.01.003
- Dhingra N., Zhao X. (2019) Intricate SUMO-based control of the homologous recombination machinery. Genes Dev. 33, 1346–1354. doi: 10.1101/gad.328534.119
- Soria-Bretones I., Cepeda-García C., Checa-Rodriguez C., Heyer V., Reina-San-Martin B., Soutoglou E., Huertas P. (2017) DNA end resection requires constitutive sumoylation of CtIP by CBX4. Nat. Commun. 8, 113. doi: 10.1038/s41467-017-00183-6
- Bologna S., Altmannova V., Valtorta E., Koenig C., Liberali P., Gentili C., Anrather D., Ammerer G., Pelkmans L., Krejci L., Ferrari S. (2015) Sumoylation regulates EXO1 stability and processing of DNA damage. Cell Cycle. 14, 2439–2450. doi: 10.1080/15384101.2015.1060381
- Lin S., Staahl B.T., Alla R.K., Doudna J.A. (2014) Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. 3, e04766. doi: 10.7554/eLife.04766
- Vassilev L.T. (2006) Cell cycle syncHDRonization at the G2/M phase border by reversible inhibition of CDK1. Cell Cycle. 5, 2555–2556. doi: 10.4161/cc.5.22.3463
- Lomova A., Clark D.N., Campo-Fernandez B., Flores-Bjurström C., Kaufman M.L., Fitz-Gibbon S., Wang X., Miyahira E.Y., Brown D., DeWitt M.A., Corn J.E., Hollis R.P., Romero Z., Kohn D.B. (2019) Improving gene editing outcomes in human hematopoietic stem and progenitor cells by temporal control of DNA repair. Stem Cells. 37, 284–294. doi: 10.1002/stem.2935
- Gerlach M., Kraft T., Brenner B., Petersen B., Niemann H., Montag J. (2018) Efficient knock-in of a point mutation in porcine fibroblasts using the CRISPR/Cas9-GMNN fusion gene. Genes. 9, 296. doi: 10.3390/genes9060296
- Howden S.E., McColl B., Glaser A., Vadolas J., Petrou S., Little M.H., Elefanty A.G., Stanley E.G. (2016) A Cas9 variant for efficient generation of InDel-free knockin or gene-corrected human pluripotent stem cells. Stem Cell Rep. 7, 508–517. doi: 10.1016/j.stemcr.2016.07.001
- Schep R., Brinkman E.K., Leemans C., Vergara X., van der Weide R.H., Morris B., van Schaik T., Manzo S.G., Peric-Hupkes D., van den Berg J., Beijersbergen R.L., Medema R.H., van Steensel B. (2021) Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance. Mol. Cell. 81, 2216–2230.e10. doi: 10.1016/j.molcel.2021.03.032
- Chen Z., Tyler J.K. (2022) The chromatin landscape channels DNA double-strand breaks to distinct repair pathways. Front. Cell Dev. Biol. 10, 909696. doi: 10.3389/fcell.2022.909696
- Clouaire T., Rocher V., Lashgari A., Arnould C., Aguirrebengoa M., Biernacka A., Skrzypczak M., Aymard F., Fongang B., Dojer N., Iacovoni J.S., Rowicka M., Ginalski K., Côté J., Legube G. (2018) Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Mol. Cell. 72, 250–262.e6. doi: 10.1016/j.molcel.2018.08.020
- Yilmaz D., Furst A., Meaburn K., Lezaja A., Wen Y., Altmeyer M., Reina-San-Martin B., Soutoglou E. (2021) Activation of homologous recombination in G1 preserves centromeric integrity. Nature. 600, 748–753. doi: 10.1038/s41586-021-04200-z
- Chen X., Rinsma M., Janssen J.M., Liu J., Maggio I., Gonçalves M.A. (2016) Probing the impact of chromatin conformation on genome editing tools. Nucl. Acids Res. 44, 6482–6492. doi: 10.1093/nar/gkw524
- Janssen J.M., Chen X., Liu J., Gonçalves M.A.F.V. (2019) The chromatin structure of CRISPR-Cas9 target DNA controls the balance between mutagenic and homology-directed gene-editing events. Mol. Ther. Nucl. Acids. 16, 141–154. doi: 10.1016/j.omtn.2019.02.009
- Liu B., Chen S., Rose A., Chen D., Cao F., Zwinderman M., Kiemel D., Aïssi M., Dekker F.J., Haisma H.J. (2020) Inhibition of histone deacetylase 1 (HDAC1) and HDAC2 enhances CRISPR/Cas9 genome editing. Nucl. Acids Res. 48, 517–532. doi: 10.1093/nar/gkz1136
- Takayama K., Igai K., Hagihara Y., Hashimoto R., Hanawa M., Sakuma T., Tachibana M., Sakurai F., Yamamoto T., Mizuguchi H. (2017) Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system. Nucl. Acids Res. 45, 5198–5207. doi: 10.1093/nar/gkx130
- Knight S.C., Xie L., Deng W., Guglielmi B., Witkowsky L.B., Bosanac L., Zhang E.T., El Beheiry M., Masson J.B., Dahan M., Liu Z., Doudna J.A., Tjian R. (2015) Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science. 350, 823–826. doi: 10.1126/science.aac6572
- Caron P., Pobega E., Polo S.E. (2021) DNA double-strand break repair: all roads lead to heterochROMAtin marks. Front Genet. 12, 730696. doi: 10.3389/fgene.2021.730696
- Chechik L., Martin O., Soutoglou E. (2020) Genome editing fidelity in the context of DNA sequence and chromatin structure. Front. Cell. Dev. Biol. 8, 319. doi: 10.3389/fcell.2020.00319
- Song F., Stieger K. (2017) Optimizing the DNA donor template for homology-directed repair of double-strand breaks. Mol. Ther. Nucl. Acids. 7, 53–60. doi: 10.1016/j.omtn.2017.02.006
- Renaud J.B., Boix C., Charpentier M., De Cian A., Cochennec J., Duvernois-Berthet E., Perrouault L., Tesson L., Edouard J., Thinard R., Cherifi Y., Menoret S., Fontanière S., de Crozé N., Fraichard A., Sohm F., Anegon I., Concordet J.P., Giovannangeli C. (2016) Improved genome editing efficiency and flexibility using modified oligonucleotides with TALEN and CRISPR-Cas9 nucleases. Cell Rep. 14, 2263–2272. doi: 10.1016/j.celrep.2016.02.018
- Lim D., Sreekanth V., Cox K.J., Law B.K., Wagner B.K., Karp J.M., Choudhary A. (2020) Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Nat. Commun. 11, 4043. doi: 10.1038/s41467-020-17725-0
- Shola D.T.N., Yang C., Han C., Norinsky R., Peraza R.D. (2021) Generation of mouse model (KI and CKO) via Easi-CRISPR. Methods Mol. Biol. 2224, 1–27. doi: 10.1007/978-1-0716-1008-4_1
- Yoon Y., Wang D., Tai P.W.L., Riley J., Gao G., Rivera-Pérez J.A. (2018) Streamlined ex vivo and in vivo genome editing in mouse embryos using recombinant adenoassociated viruses. Nat. Commun. 9, 412. doi: 10.1038/s41467-017-02706-7
- Chen S., Sun S., Moonen D., Lee C., Lee A.Y., Schaffer D.V., He L. (2019) CRISPR-READI: efficient generation of knockin mice by CRISPR RNP electroporation and AAV donor infection. Cell Rep. 27, 3780–3789.e4. doi: 10.1016/j.celrep.2019.05.103
- Bak R.O., Porteus M.H. (2017) CRISPR-mediated integration of large gene cassettes using AAV donor vectors. Cell Rep. 20, 750–756. doi: 10.1016/j.celrep.2017.06.064
- Yao X., Wang X., Hu X., Liu Z., Liu J., Zhou H., Shen X., Wei Y., Huang Z., Ying W., Wang Y., Nie Y.H., Zhang C.C., Li S., Cheng L., Wang Q., Wu Y., Huang P., Sun Q., Shi L., Yang H. (2017) Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res. 27, 801–814. doi: 10.1038/cr.2017.76
- Yao X., Zhang M., Wang X., Ying W., Hu X., Dai P., Meng F., Shi L., Sun Y., Yao N., Zhong W., Li Y., Wu K., Li W., Chen Z.J., Yang H. (2018) Tild-CRISPR allows for efficient and precise gene knockin in mouse and human cells. Dev. Cell. 45, 526–536.e5. doi: 10.1016/j.devcel.2018.04.021
- Sakuma T., Nakade S., Sakane Y., Suzuki K.T., Yamamoto T. (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat. Protoc. 11, 118–133. doi: 10.1038/nprot.2015.140
- Artegiani B., Hendriks D., Beumer J., Kok R., Zheng X., Joore I., Chuva de Sousa Lopes S., van Zon J., Tans S., Clevers H. (2020) Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing. Nat. Cell Biol. 22, 321–331. doi: 10.1038/s41556-020-0472-5
- Lau C.H., Tin C., Suh Y. (2020) CRISPR-based strategies for targeted transgene knock-in and gene correction. Fac. Rev. 9, 20. doi: 10.12703/r/9-20
- Zetsche B., Gootenberg J.S., Abudayyeh O.O., Slaymaker I.M., Makarova K.S., Essletzbichler P., Volz S.E., Joung J., van der Oost J., Regev A., Koonin E.V., Zhang F. (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163, 759–771. doi: 10.1016/j.cell.2015.09.038
- Zhao Z., Shang P., Sage F., Geijsen N. (2022) Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR. Nucl. Acids Res. 50, e62. doi: 10.1093/nar/gkac118
- Cruz-Becerra G, Kadonaga JT. Enhancement of homology-directed repair with chromatin donor templates in cells. Elife. 2020 Apr 28;9:e55780. doi: 10.7554/eLife.55780
- Carlson-Stevermer J., Abdeen A.A., Kohlenberg L., Goedland M., Molugu K., Lou M., Saha K. (2017) Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat. Commun. 8, 1711. doi: 10.1038/s41467-017-01875-9
- Ma M., Zhuang F., Hu X., Wang B., Wen X.Z., Ji J.F., Xi J.J. (2017) Efficient generation of mice carrying homozygous double-floxp alleles using the Cas9-avidin/biotin-donor DNA system. Cell Res. 27, 578–581. doi: 10.1038/cr.2017.29
- Savic N., Ringnalda F.C., Lindsay H., Berk C., Bargsten K., Li Y., Neri D., Robinson M.D., Ciaudo C., Hall J., Jinek M., Schwank G. (2018) Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife. 7, e33761. doi: 10.7554/eLife.33761
Supplementary files
